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1. Feature map. The two patterns x(1) and x(2) shown in Figure 1(a) are
processed by a very simple convolutional network that has one convolution
layer with one single 4×4 kernel with ReLU units, zero threshold, weights
wij as given in Figure 1(b), and stride (1,1). The resulting feature map is
fed into a 2×2 max-pooling layer with stride (1,1). Finally there is a fully
connected output layer with one output unit O(µ) with Heaviside activation
function. For both patterns determine the resulting feature map and the
output of the max-pooling layer. Determine weights Wk and a threshold Θ
so that the network output is O(1) = 0 for input pattern x(1), and O(2) = 1
for input pattern x(2).

(a)x(1) x(2)
(b).

Figure 1: (a) Input patterns x(1) and x(2) with 0/1 bits (� corresponds to
xi=0 and � to xi=1). (b) Weights wij of a 4×4 kernel of a feature map.
The weights are either 0 or 1 (� corresponds to wij = 0 and � to wij = 1).
(Question 1).
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2. Hopfield network with hidden units. A Hopfield network with hidden
neurons can be used to learn a distribution of input patterns. Consider a
Hopfield network with N visible neurons vj and M hidden neurons hi. The
neurons are binary, with values −1 or +1. The network learns by updating
the visible neurons according to

vj ← sgn
[
b
(v)
j

]
with b

(v)
j =

M∑
i=1

hiwij, (1)

and by updating the hidden neurons according to

hi ← sgn
[
b
(h)
i

]
with b

(h)
i =

N∑
j=1

wijvj. (2)

In Equations (1) and (2), wij are the elements of a M × N weight matrix.
Furthermore, sgn[b] is the signum function, sgn[b] = −1 if b < 0 and +1
otherwise. Show that the energy function

H = −
M∑
i=1

N∑
j=1

wijhivj (3)

can not increase upon updating one of the hidden neurons according to
eq. (2).
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3. Backpropagation
Assuming the energy function

H =
1

2

∑
i,µ

(y
(µ)
i −O

(µ)
i )2, (4)

derive the update rule for the weights w
(`)
ij for ` = 1, 2 and 3 for the network

shown in Figure 2.

x
(µ)
k

w
(1)
jk

V
(1,µ)
j

w
(2)
mj

V
(2,µ)
m

w
(3)
pm

V
(3,µ)
p = O

(µ)
p

Figure 2: Network for Question 3.
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4. XNOR function. The Boolean XNOR function takes two binary inputs.
For the inputs [−1,−1] and [1, 1] the function evaluates to +1, for the other
two to −1. Encode the XNOR function as weights wij in a Hopfield net
with three neurons by storing the patterns x(1) = [−1,−1, 1], x(2) = [1, 1, 1],
x(3) = [−1, 1,−1], and x(4) = [1,−1,−1] using Hebb’s rule:

wij =
1

3

4∑
µ=1

x
(µ)
i x

(µ)
j where i, j = 1, . . . , 3. (5)

The update rule for bit Si is

Si ← sgn

[
3∑
j=1

wijSj

]
, (6)

where sgn[b] is the signum function, sgn[b] = −1 if b < 0 and +1 otherwise.

(a) What is the weight matrix that you obtain? Feed the stored patterns to
the net, and test whether they are stable under synchronous updating.

(b) Use the weight matrix to compute the energy function,

H = −1

2

∑
ij

wijsisj. (7)

Use the fact that the elements si only take values ±1.

(c) Based on your answers to the previous parts, conclude with one or
two sentences whether the network is useful for recognising the XNOR
function.

(d) What would be the difference if one tried to store just patterns 1, 2 and
3, and not all 4 patterns?
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5. Gradient descent and momentum. Consider the given energy func-
tion H as a function of a single weight w as shown in Figure 3. Use the
following gradient-descent update rule:

δwn+1 = −η∂H
∂w

+ α δwn. (8)

Here η is the learning rate, and α is the momentum parameter. The weight
at time step n+1 is then given by wn+1 = wn+δwn. Assume that the system
is initially at point A. The slope of the segment AB in Figure 3 is −s and
the slope of the segment BC is 0. The slope at point A is defined to be −s
and that at point B to be 0. The system starts at time step 1, and assume
that δw0 = 0. Assume that ηs = 1/2.

(a) At which time step n does the system reach point B for α = 0?

(b) Repeat the previous calculation for the case α = 1/2. You should
find that the final equation you obtain for the number of time steps
n involves a linear term in n, and an exponential term in n. Plot the
linear and exponential functions schematically with n on the x-axis. In
this plot, mark the value of n where the two functions intersect, thus
obtaining the value of n at which the system reaches point B.

(c) Which of the two cases: α = 0 and α = 1/2 reaches point B faster?
Use the results of the previous two parts to justify your answer.

(d) What is the fate of the two systems α = 0 and α = 1/2 once they cross
point B?

L

H

w

M

A

B C

slope=−s

Figure 3: Energy as a function of weight for Question 5.
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6. Linear activation function Consider using a linear activation function
g(b) = b in a fully connected simple perceptron with one output unit. Fed
with a training pattern x(µ), the output O(µ) is given by

O(µ) = wTx(µ) − θ. (9)

Here w is a column vector of weights, and θ is a scalar threshold. There are
p training patterns, µ = 1, . . . , p. Their target outputs are denoted by t(µ).
For the perceptron considered, the energy function

H =
1

2

p∑
µ=1

(
O(µ) − t(µ)

)2
(10)

has only one minimum, and it can be found analytically. In the following,
you will derive the threshold θ at the minimum.

a) Start by showing that the minimum implies

Gw = α+ θβ (11a)

βTw = θ + γ (11b)

with

G =
〈
xxT

〉
, α = 〈tx〉 , β = 〈x〉 and γ = 〈t〉 , (12)

where 〈. . . 〉 denotes an average over the training patterns.

b) Assume that G is invertible, with inverse G−1. Furthermore, assume that
βTG−1β 6= 1 and solve eqs. (11) for θ.
c) If, in a fully connected multi-layer perceptron, one uses a linear activation
function g(b) = b, it holds that

V (µ,`) = w(`)V (µ,`−1) − θ(`)

=
[
w(`)w(`−1)

]
V (µ,l−2) −

[
w(l)θ(`−1) + θ(`)

]
. (13)

Here, V (µ,`) is the µth neuron in the `th hidden layer. Furthermore, w(`) and
θ(`) are the weight matrix and theshold vector for the neurons in the `th hid-
den layer. Write at most three sentences where you, based on eq. (13), argue
that a non-linear activation function is essential for a multi-layer perceptron.
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CHALMERS, GÖTEBORGS UNIVERSITET

SOLUTIONS FOR EXAM for
ARTIFICIAL NEURAL NETWORKS

COURSE CODES: FFR 135, FIM 720 GU, PhD

1. Feature map. The two patterns x(1) and x(2) shown in Figure 1(a) are
processed by a very simple convolutional network that has one convolution
layer with one single 4×4 kernel with ReLU units, zero threshold, weights
wij as given in Figure 1(b), and stride (1,1). The resulting feature map is
fed into a 2×2 max-pooling layer with stride (1,1). Finally there is a fully
connected output layer with one output unit O(µ) with Heaviside activation
function. For both patterns determine the resulting feature map and the
output of the max-pooling layer. Determine weights Wk and a threshold Θ
so that the network output is O(1) = 0 for input pattern x(1), and O(2) = 1
for input pattern x(2).

(a)x(1) x(2)
(b).

Figure 1: (a) Input patterns x(1) and x(2) with 0/1 bits (� corresponds to
xi=0 and � to xi=1). (b) Weights wij of a 4×4 kernel of a feature map.
The weights are either 0 or 1 (� corresponds to wij = 0 and � to wij = 1).
(Question 4).
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Solution to ”1. Feature map”

Input to feature map of pattern x(1):
8 6
−2 −6
−6 −2
6 8

 . (1)

Input to feature map of pattern x(2):
−2 −2
0 0
0 0
0 0

 . (2)

Feature map of pattern x(1): 
8 6
0 0
0 0
6 8

 . (3)

Feature map of pattern x(2): 
0 0
0 0
0 0
0 0

 . (4)

Max-pooling layer of pattern x(1): 8
0
8

 . (5)

Max-pooling layer of pattern x(2): 0
0
0

 . (6)

With Wk = −δk1 and θ = −4 we have

3∑
k=1

Wk

8
0
8


k

− T = −4 (7)

and

3∑
k=1

Wk

0
0
0


k

− T = 4. (8)

Applying the Heaviside activation function results in the requested outputs.
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2. Hopfield network with hidden units A Hopfield network with hidden
neurons can be used to learn a distribution of input patterns. Consider a
Hopfield network with N visible neurons vj and M hidden neurons hi. The
neurons are binary, with values −1 or +1. The network learns by updating
the visible neurons according to

vj ← sgn
[
b
(v)
j

]
with b

(v)
j =

M∑
i=1

hiwij, (9)

and by updating the hidden neurons according to

hi ← sgn
[
b
(h)
i

]
with b

(h)
i =

N∑
j=1

wijvj. (10)

In Equations (9) and (10), wij are the elements of a M ×N weight matrix.
Furthermore, sgn[b] is the signum function, sgn[b] = −1 if b < 0 and +1
otherwise. Show that the energy function

H = −
M∑
i=1

N∑
j=1

wijhivj (11)

can not increase upon updating one of the hidden neurons according to
eq. (10).

3



Solution to ”2. Hopfield network with hidden units”

Denote the the value of hidden neuron i after the update by h′i. Suppose
that the kth hidden neuron changes sign. We then have:

h′i = hi − 2hiδik, (12)

The energy after the update is

H ′ =−
M∑
i=1

N∑
j=1

wijh
′
ivj (13)

=−
N∑
j=1

vj

M∑
i=1

wij(hi − 2hiδik) (14)

=−
N∑
j=1

vj

M∑
i=1

wij(hi − 2hiδik) (15)

=−
N∑
j=1

vj

[
M∑
i=1

wijhi − 2
M∑
i=1

wijhiδik

]
(16)

=−
N∑
j=1

vj

[
M∑
i=1

wijhi − 2wkjhk

]
(17)

=−
N∑
j=1

M∑
i=1

wijhivj + 2hk

N∑
j=1

wkjvj (18)

=H + 2hkb
(h)
k . (19)

If the kth hidden neuron change sign, then hkb
(h)
k < 0.
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3. Backpropagation
Assuming the energy function

H =
1

2

∑
i,µ

(y
(µ)
i −O

(µ)
i )2, (20)

derive the update rule for the weights w
(L)
ij for L = 1, 2 and 3 for the network

shown in Figure 2.

x
(µ)
k

w
(1)
jk

V
(1,µ)
j

w
(2)
mj

V
(2,µ)
m

w
(3)
lm

V
(3,µ)
l = O

(µ)
l

Figure 2: Network for Question 4.
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Solution to ”3. Backpropagation”
See course book.
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4. XOR function. The Boolean XOR function takes two binary inputs.
For the inputs [−1,−1] and [1, 1] the function evaluates to −1, for the other
two inputs it evaluates to +1. Encode the XOR function as weights wij in a
Hopfield net with three neurons by storing the patterns x(1) = [−1,−1,−1],
x(2) = [1, 1,−1], x(3) = [−1, 1, 1], and x(4) = [1,−1, 1] using Hebb’s rule:

wij =
1

3

4∑
µ=1

x
(µ)
i x

(µ)
j where i, j = 1, . . . , 3. (21)

The update rule for bit Si is

Si ← sgn

[
3∑
j=1

wijSj

]
, (22)

where sgn[b] is the signum function, sgn[b] = −1 if b < 0 and +1 otherwise.
Feed the stored patterns to the net, and test whether they are stable under
synchronous updating. Conclude with one or two sentences whether the
network is useful for recognising the XOR function.
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Solution to ”4. XOR function”

3W =

1 1 1
1 1 1
1 1 1

+

 1 1 −1
1 1 −1
−1 −1 1

 (23)

+

 1 −1 −1
−1 1 1
−1 1 1

+

 1 −1 1
−1 1 −1
1 −1 1

 (24)

=

4 0 0
0 4 0
0 0 4

 . (25)

The weight matrix is proportional to the identity matrix. All patterns are
therefore stable, and the network does not recognise the XOR function.
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5. Gradient descent and momentum
Consider the given energy function H as a function of weight w as shown in
Fig. 4. Use the following gradient descent update rule,

δwn+1 = −η∂H
∂w

+ α δwn. (26)

Assume that the system is initially at point A, and that ηs = 1/2. The slope
of the segment AB in Fig. 4 is −s and the slope of the segment BC is 0.
The system starts at time step 1, and assume that δw0 = 0.

1. Find the number of time steps required to travel from point A to point
B for α = 0.

2. Repeat the previous calculation for the case α = 1/2, and graphically
find the solution of the final equation you obtain.

3. Indicate the results of the previous two parts on the same graph. Which
of the two cases: α = 0 and α = 1/2 converges faster?

4. What is the fate of the two systems α = 0 and α = 1/2 once they cross
point B?

L

H

w

M

A

B C

slope=−s

Figure 3: Energy as a function of weight for problem: Gradient descent and
momentum.
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Solution to ”5. Gradient descent and momentum”
1 and 2: We calculate the total change in weight at time step n,∆wn =∑n

i=1 δwi, equate ∆wn to L and solve for n. Proceed by solving for δwn.
Iterating the equation for δw we find,

δwi+1 =
i∑

j=0

ηs αj + αi+1δw0, (27)

= ηs
1− αi+1

1− α
. (28)

Next compute ∆wn,

∆wn =
n∑
i=1

δwi, (29)

= ηs
n∑
i=1

1− αi+1

1− α
, (30)

=
ηs

1− α

(
n− α1− αn

1− α

)
. (31)

Thus using ηs = 1/2 we obtain, for α = 0, ∆wn(α = 0) = n/2, and for
α = 1/2, ∆wn(α = 1/2) = n− 1 + 2−m. Equating ∆w = L we obtain,

nα=0 = 2L, (32)

nα=1/2 − 1 + 2−nα=1/2 = L. (33)

graphing the above equations, we see that nα=1/2 < nα=0, thus, α = 1/2
converges faster.
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f(n) = L+ 1− n

f(n) = 2−n

f(n)

n nα=0
nα=1/2

Figure 4: Graphical solution of problem : gradient descent and momentum.

After crossing point B, δw(α = 0) = 0 so that this system stays stationary,
however δwα=1/2 > 0 so that this system keeps on moving.
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6. Linear activation function
Consider using a linear activation function g(b) = b in a fully connected
simple perceptron with one output unit. Fed with a training pattern x(µ),
the output O(µ) is given by

O(µ) = wTx(µ) − θ. (34)

Here w is a column vector of weights, and θ is a scalar threshold. There are
p training patterns, µ = 1, . . . , p. Their target outputs are denoted by t(µ).
For the perceptron concidered, the energy function

H =
1

2

p∑
µ=1

(
O(µ) − t(µ)

)2
(35)

has only one minimum, and it can be found analytically. In the following,
you will derive the threshold θ at the minimum.

a) Start by showing that the minimum implies

Gw = α+ θβ (36a)

βTw = θ + γ (36b)

with

G =
〈
xxT

〉
, α = 〈tx〉 , β = 〈x〉 and γ = 〈t〉 , (37)

where 〈. . . 〉 denotes an average over the training patterns.

b) Assume that G is invertible, with inverse G−1. Furthermore, assume that
βTG−1β 6= 1 and solve eqs. (36) for θ.

c) If, in a fully connected multi-layer perceptron, one uses a linear activation
function g(b) = b, it holds that

V (µ,`) = w(`)V (µ,`−1) − θ(`)

=
[
w(`)w(`−1)]V (µ,l−2) −

[
w(l)θ(`−1) + θ(`)

]
. (38)

Here, V (µ,`) is the µth neuron in the `th hidden layer. Furthermore, w(`) and
θ(`) are the weight matrix and theshold vector for the neurons in the `th hid-
den layer. Write at most three sentences where you, based on eq. (38), argue
that a non-linear activation function is essential for a multi-layer perceptron.
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Solution to ”6. Linear activation function”
a)

∂H

∂wi
=

∂

∂wi

1

2

p∑
µ=1

(
O(µ) − t(µ)

)2
(39)

=

p∑
µ=1

(
O(µ) − t(µ)

) ∂O(µ)

∂wi
(40)

=

p∑
µ=1

(
O(µ) − t(µ)

)
xµi (41)

=

p∑
µ=1

(
N∑
j=1

wjx
(µ)
j − θ − t(µ)

)
xµi (42)

=

p∑
µ=1

(
N∑
j=1

wjx
(µ)
j

)
xµi +

p∑
µ=1

(−θ)xµi +

p∑
µ=1

(
−t(µ)

)
xµi (43)

=

p∑
µ=1

N∑
j=1

wjx
(µ)
j xµi −

p∑
µ=1

θxµi −
p∑

µ=1

t(µ)xµi (44)

=
N∑
j=1

p∑
µ=1

wjx
(µ)
j xµi − θ

p∑
µ=1

xµi −
p∑

µ=1

t(µ)xµi (45)

=
N∑
j=1

wj

p∑
µ=1

x
(µ)
j xµi − θ

p∑
µ=1

xµi −
p∑

µ=1

t(µ)xµi (46)

=
N∑
j=1

wjpGji − θpβi − pαi (47)

=p

(
N∑
j=1

Gijwj − θβi − αi

)
(48)

(49)

∂H

∂wi
= 0⇒ Gw = α+ θβ (50)
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∂H

∂θ
=
∂

∂θ

1

2

p∑
µ=1

(
O(µ) − t(µ)

)2
(51)

=

p∑
µ=1

(
O(µ) − t(µ)

) ∂O(µ)

∂θ
(52)

=

p∑
µ=1

(
O(µ) − t(µ)

)
xµi (53)

=

p∑
µ=1

(
N∑
j=1

wjx
(µ)
j − θ − t(µ)

)
(−1) (54)

=−
p∑

µ=1

(
N∑
j=1

wjx
(µ)
j

)
−

p∑
µ=1

(−θ)−
p∑

µ=1

(
−t(µ)

)
(55)

=−
p∑

µ=1

N∑
j=1

wjx
(µ)
j +

p∑
µ=1

θ +

p∑
µ=1

t(µ) (56)

=−
N∑
j=1

wj

p∑
µ=1

x
(µ)
j + pθ + pγ (57)

=− p
N∑
j=1

wjβj + pθ + pc (58)

(59)

∂H

∂θ
= 0⇒ wTβ = θ + γ. (60)

b) The first equation gives:

w = G−1α+ θG−1β. (61)

Insert into the second, and use that wTβ = βTw:

βT
[
G−1α+ θG−1β

]
= θ + γ (62)

⇒ βTG−1α+ θβTG−1β = θ + γ (63)

⇒ θ
[
βTG−1β − 1

]
= γ − βTG−1α (64)

⇒ θ =
γ − βTG−1α
βTG−1β − 1

. (65)

c) The equation can be written as

V (µ,`) = WV (µ,`−2) −Θ, (66)
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where

W = w(`)w(`−1), (67)

and

Θ = w(l)θ(`−1) + θ(`). (68)

The two layers can tehrefore be collapsed into one single layer, and with a
linear activation function in all layers the whole perceptron collapses into
a simple perceptron with linear activation function. Such a perceptron can
only solve linearly separable problems.
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