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Maximum score on this exam: 12 points.
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1. Energy function in a neural network.
(a) Fig. 1 shows a neural network with two neurons with asymmetric weights,
w12 = 2, and w21 = −1. The states of the neurons, denoted by S1 and S2,
are either +1 or −1. Show that the energy function

H = −w12 + w21

2
S1S2 (1)

can increase under the asynchronous deterministic McCulloch-Pitts rule for
updating the second neuron S ′

2 = sgn(w21S1), but not under the deterministic
McCulloch-Pitts rule for updating the first neuron S ′

1 = sgn(w12S2). (0.5p).
(b) For the network shown in Fig. 1, show that the energy (1) cannot stay
constant after a single step of synchronous update rule S ′

i = sgn(wijSj), for
i = 1, 2. (0.5p).
(c) Now consider a neural network withN neurons. The states of the neurons,
denoted by ni (i = 1, . . . , N) are either 0 or 1. The weights wij are symmetric
wij = wji for i 6= j, and wii > 0 for i = 1, . . . , N . Show that the energy
function

H = −1

2

N∑
i=1

N∑
j=1

wijninj +
N∑
i=1

µini (2)
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Figure 1: Question 1. Neural network with two neurons and asymmetric
weights.

cannot increase under the asynchronous update rule

n′
m = θH(bm), with bm =

N∑
j=1

wmjnj − µm . (3)

Here

θH(bm) =

{
1, for bm > 0,

0, otherwise
(4)

is the Heaviside step function. (1p).
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Figure 2: Question 2. Each of the five patterns consists of 35 bits x
(µ)
i . A

black pixel i in pattern µ corresponds to x
(µ)
i = 1, a white one to x

(µ)
i = −1.

2. Recognising digits with a Hopfield network. Fig. 2 shows five
patterns, each withN = 35 bits. Store the patterns x(1) and x(2) in a Hopfield
network using Hebb’s rule wij = 1

N

∑2
µ=1 x

(µ)
i x

(µ)
j with i, j = 1, . . . , N . Use

the update rule

Si ← sgn
( N∑
j=1

wijSj
)
. (5)

Feed the patterns into the network. To determine their fate, follow the steps
outlined below.
(a) Compute

∑N
j=1 x

(µ)
j x

(ν)
j , for µ = 1, ν = 1, . . . , 5, and also for µ = 2,

ν = 1, . . . , 5. Hint: the result can be read off from the Hamming distances
between the patterns shown in Figure 2. (0.5p).

(b) Consider the quantity b
(ν)
i =

∑N
j=1wijx

(ν)
j , where wij are the weights

obtained by storing patterns x(1) and x(2). Compute b
(ν)
i for ν = 1, . . . , 5.

Express your result as linear combinations of x
(1)
i and x

(2)
i . Hint: use your

answer to the first part of this question. (1p).
(c) Feed the patterns in Figure 2 to the network. Which of the patterns
remain the same after one synchronous update according to (5)? (0.5p).
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3. Linearly inseparable problem. A classification problem is specified
in Fig. 3, where a grey triangle in input space is shown. The aim is to map
input patterns x(µ) to outputs O(µ) as follows: if a point x(µ) lies inside the
triangle it is mapped to O(µ) = +1, but if x(µ) is outside the triangle it is
mapped to O(µ) = −1. How patterns on the boundary of the triangle are
classified is not important.
(a) Show that this problem is not linearly separable by constructing a counter-
example using four input patterns. (0.5p).
(b) The problem can be solved by a perceptron with one hidden layer with
three neurons (j = 1, 2, 3)

V
(µ)
j = sgn

(
−θj +

2∑
k=1

wjkx
(µ)
k

)
(6)

and output

O(µ) = sgn
(
−Θ +

3∑
j=1

WjV
(µ)
j

)
. (7)

Here wjk and Wj are weights and θj and Θ are thresholds. In Fig. 3, the
orientation of weight vectors wj = (wj1, wj2)

T corresponding to hidden nodes
j = 1, 2, 3 is indicated. Using this, find values of wjk and θj and that solve
the classification problem. (1p).
(c) Based on your result in (b), illustrate the problem in the hidden space
encoding the outputs, draw a decision boundary that solves the problem,
and compute Wj and Θ corresponding to the decision boundary you drew.
(0.5p).

Figure 3: Question 3. Classification problem. Input space is the x1 − x2-
plane. Depicted are the orientations of the weight vectors wj (j = 1, 2, 3)
corresponding to the hidden neurons.
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µ x
(µ)
1 x

(µ)
2 x

(µ)
3 t(µ)

1 0 1 0 −1
2 1 0 1 −1
3 0 0 0 +1
4 1 0 0 −1
5 1 1 0 −1
6 0 0 1 −1
7 0 1 1 −1
8 1 1 1 +1

Table 1: Question 4. Inputs and target values for the problem specified in
question 4.

4. Decision boundary. Consider the problem in Table 1.

a) Illustrate the problem graphically. Explain whether or not it can be solved
by a simple perceptron with three input units, and one output unit O(µ) =
sgn(

∑3
i=1wix

(µ)
i − θ), where wi is the weight from unit i to the output with

threshold θ. (0.5p)

b) Show that this problem can be solved following the three steps below.

1. Transform the inputs (x1, x2, x3)
T to two-dimensional coordinates (g1, g2)

T

using the following functions:

g1(x
(µ)) = exp(−|x(µ) −w1|2), with w1 = (0, 0, 0)T , (8)

g2(x
(µ)) = exp(−|x(µ) −w2|2), with w2 = (1, 1, 1)T . (9)

Here x(µ) = (x
(µ)
1 , x

(µ)
2 , x

(µ)
3 )T, and | · · · | denotes the norm of a vector.

Plot the positions of the eight input patterns in the transformed space
(g1, g2)

T, encoding the different target outputs. (To compute gi(x
(µ))

use the following approximations: exp(−1) ≈ 0.37, exp(−2) ≈ 0.14,
exp(−3) ≈ 0.05.) (0.5p)

2. Use the transformed input data as inputs to a simple perceptron with
sgn(· · · ) activation function. In the plot you drew in the previous step,
draw also a decision boundary that solves the problem when a simple
perception is applied to the transformed data. (0.5p)

3. Compute the weight vector and the threshold for the simple perceptron
corresponding to the decision boundary you drew in the previous step.
(0.5p)

5. Training a multi-layer perceptron by gradient descent. To train
a multi-layer perceptron by gradient descent one needs update formulae for
weights and thresholds. Derive these update formulae for sequential training
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Figure 4: Question 5. Multi-layer perceptron with three input terminals, one
hidden layer, and one output.

using backpropagation for the network shown in Fig. 4. The weights for the
hidden layer are denoted by wjk, and those for the output layer by W1j. The
corresponding thresholds are denoted by θj and Θ1, and the activation func-

tion by g(· · · ). The target value for input pattern x(µ) is t
(µ)
1 , and the pattern

index µ ranges from 1 to p. The energy function is H = 1
2

∑p
µ=1(t

(µ)
1 −O

(µ)
1 )2.

(2p).

6. Number of parameters of a convolutional net. A convolutional
net has the following layout (Fig. 5): an input layer of size 31 × 31 × 3, a
convolutional layer with ReLU activations with 10 kernels with local receptive
fields of size 3×3, stride (2, 2), and padding = (0, 0, 0, 0), a max-pooling layer
with local receptive field of size 5 × 5, stride = (5, 5), padding = (0, 0, 0, 0),
a fully connected layer with 10 neurons with sigmoid activations, and a fully
connected output layer with 5 neurons. In one or two sentences, explain
the function of each of the layers. Specify the values of the parameters
x1, y1, z1, x2, . . . , y5 depicted in Fig. 5 and determine the number of trainable
parameters (weights and thresholds) for the connections into each layer of
the network. (2p)
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inputs convolution max-pooling fully output
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Figure 5: Question 6. Layout of convolutional net in Question 6.


