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1. One-step error probability in deterministic Hopfield model. In
the deterministic Hopfield model, the state Si of the i-th neuron is updated
according to the rule

Si ← sgn
( N∑
j=1

wijSj
)
. (1)

There are N neurons. The weights wij are stored in the network according
to Hebb’s rule. There are two alternative ways of implementing Hebb’s rule.

i) The first alternative is to assign

wij =
1

N

p∑
µ=1

x
(µ)
i x

(µ)
j for i 6= j , and wii = 0 otherwise . (2)

ii) The second alternative is

wij =
1

N

p∑
µ=1

x
(µ)
i x

(µ)
j for all i and j . (3)
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The pattern bits x
(µ)
i take the values 1 or −1, and the pattern index µ ranges

from 1 to p. Assume random patterns ( x
(µ)
i = 1 or −1 with probability 0.5).

Derive approximate expressions for the one-step error probability P
(t=1)
error in

the limit of large p and N , for two cases:

(a) Weights given by Equation (2). (1p).

(b) Weights given by Equation (3). (1p).

(c) For both cases, sketch the dependence of P
(t=1)
error upon the storage capacity

α = p/N . Examine and explain the limiting behaviours as α→∞. (1p).

2. Linear separability of Boolean functions. Consider Boolean func-
tions with three inputs x

(µ)
i (i = 1, 2, 3) and one output

O(µ) = sgn(
3∑
i=1

wix
(µ)
i − θ) . (4)

Here wi (i = 1, 2, 3) are the weights, θ is a threshold assigned to the output,
and µ = 1, . . . , 23. Assume that four targets equal 1, and 4 targets equal −1.
An example of such a function is given in Table 1.

(a) Illustrate the function in Table 1 graphically. Colour inputs with targets
= 1 black, and inputs with targets = −1 white. Using your illustration
explain why this Boolean function can be solved by a simple perceptron with
three inputs and one output. Draw a solution to the problem. Compute the
weights wi and the threshold θ corresponding to your solution. (0.5p)

(b) How many three-dimensional Boolean functions are there with 4 targets
= 1, and 4 targets = −1? Describe how you arrive at the answer. (0.5p)

(c) How many of the Boolean functions you found in (b) can be solved by
a simple perceptron with three input units and one output unit? Describe
how you arrive at the answer. Hint: use symmetries to reduce the number
of cases. (1p) .

3. Stochastic gradient descent. To train a multi-layer perceptron us-
ing stochastic gradient descent one needs update formulae for weights and
thresholds. Derive these update formulae for sequential training using back-
propagation for the network shown in Fig. 1. The weights for the first and
second hidden layer, and for the output layer are denoted by w

(1)
jk , w

(2)
mj, and

W1m. The corresponding thresholds are denoted by θ
(1)
j , θ

(2)
m , and Θ1, and

the activation function by g(· · · ). The target value for input pattern x(µ)

is t
(µ)
1 , and the pattern index µ ranges from 1 to p. The energy function is

H = 1
2

∑p
µ=1(t

(µ)
1 −O

(µ)
1 )2. (2p).
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x
(µ)
1 x

(µ)
2 x

(µ)
3 t(µ)

−1 −1 −1 +1
−1 −1 +1 +1
−1 +1 −1 −1
+1 −1 −1 +1
−1 +1 +1 −1
+1 −1 +1 +1
+1 +1 −1 −1
+1 +1 +1 −1

Table 1: Inputs x(µ) = [x
(µ)
1 , x

(µ)
2 , x

(µ)
3 ]T and targets t(µ) for a three-

dimensional Boolean function. (Question 2).

x
(µ)
k V

(1,µ)
j V

(2,µ)
m O

(µ)
1

w
(1)
jk w

(2)
mj

W1m

Figure 1: Multi-layer perceptron with three input terminals, two hidden
layers, and one output. (Question 3).
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x(t)

O(t)

Figure 2: Recurrent network with one input unit x(t) (red), one hidden
neuron V (t) (green) and one output neuron O(t) (blue). (Question 4).

4. Recurrent network. Figure 2 shows a simple recurrent network with
one hidden neuron V (t), one input x(t) and one output O(t). The network
learns a time series of input-output pairs [x(t), y(t)] for t = 1, 2, 3, . . . , T .
Here t is a discrete time index and y(t) is the target value at time t (the
targets are denoted by y to avoid confusion with the time index t). The
hidden unit is initialised to a value V (0) at t = 0. This network can be
trained by backpropgation by unfolding it in time.

(a) Draw the unfolded network, label the connections using the labels shown
in Figure 2, and discuss the layout (max half an A4 page). (0.5p).

(b) Write down the dynamical rules for this network, the rules that determine
V (t) in terms of V (t− 1) and x(t), and O(t) in terms of V (t). Assume that
both V (t) and O(t) have the same activation function g(b). (0.5p).

(c) Derive the update rule for w(ov) for gradient descent on the energy function

H =
1

2

T∑
t=1

E(t)2 where E(t) = y(t)−O(t) . (5)

Denote the learning rate by η. Hint: the update rule for w(ov) is much simpler
to derive than those for w(vx) and w(vv). (1p).

(d) Explain how recurrent networks are used for machine translation. Draw
the layout, describe how the inputs are encoded. How is the unstable-gradient
problem overcome? (Max one A4 page). (1p).

5. Oja’s rule. The aim of unsupervised learning is to construct a net-
work that learns the properties of a distribution P (x) of input patterns
x = (x1, . . . , xN)T. Consider a network with one linear output function
y =

∑N
j=1wjxj. Under Oja’s learning rule δwi = ηy(xi − ywi) the weight

vector w converges to a steady state w∗ with components w∗j .

(a) Show that the steady state w∗ is an eigenvector of the matrix C′ with
elements C ′ij = 〈xixj〉. Here 〈· · · 〉 denotes the average over P (x). (1p).

(b) Show that the matrix C′ has non-negative eigenvalues. (1p).
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