










Stochastic optimization methods (FFR 105), 2023
Solutions to the exam (2023-10-25)

1. 1.1 E. Any number of genes (in the range [0, m]) can mutate, in principle, since
the mutation is applied on a gene-by-gene basis.

1.2 B. Only velocities should be restricted.

1.3 A. Both eigenvalues are positive, so the function is convex.

1.4 D. w starts at values larger than 1, usually around 1.4, and then falls off to
values smaller than one, typically ending around 0.3-0.4.

1.5 C. The probability equals p = (1− ptour)ptour.

1.6 C. The probability equals p2 =
1

25

(

2× 3

4
+ 6× 1

4
+ 1

)

= 0.16.

1.7 E. No general statement can be made regarding the symmetry of either matrix.

1.8 E. The list of points found by applying the Lagrange multiplier method contains
all optima of f subject to the constraint, both local and global ones.

1.9 D. Since the pheromone levels are the same on all edges, the pheromone need
not be considered. With β = 1, the probability of selecting node 3 equals

p =
5

1 + 2 + 5
=

5

8
(1)

1.10 B. An individual with fitness 0 will not be selected with RWS, in which selec-
tion is directly proportional to the fitness values. However, it can be selected
with TS, which only considers the fitness values (of the participants in the
tournament) relative to each other.

2. (a) The first search direction (d0) is given by the negative gradient, which in this
case takes the form

d0 = −∇f |x=x0
= −(4x3

1
− 2,−2x2 + 4x3

2
)T. (2)

Inserting numerical values, one finds

d0 = −(2, 2)
T. (3)

The expression for the next iterate becomes

x1 = x0 − η∇f |x=x0
= (1− 2η, 1− 2η)T. (4)



(b) Using the fact that φ(η) ≡ f(x1(η)), one finds

φ(η) = (1− 2η)4 − 2(1− 2η)− (1− 2η)2 + (1− 2η)4

= 2(1− 2η)4 − (1− 2η)2 − 2(1− 2η). (5)

(c) As a simplification, set p = 1 − 2η, so that the function φ(η) can be written
(equivalently) as ν(p) ≡ φ(p(η)) = 2p4 − p2 − 2p. Plotting ν(p) one obtains a
curve as in Fig. 1 As is evident from the functional form, ν will rise very quickly
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Figure 1: The function ν(p) from Problem 2.

for large values of |p|. By inspection, one finds that the global minimum will
be somewhere between 0.5 and 1. Applying Newton-Raphson’s method, one
obtains new iterates as

p← p−
f ′(p)

f ′′(p)
≡ p−

8p3 − 2p− 2

24p2 − 2
. (6)



Starting at p = 1 and iterating with this equation, one obtains the sequence
{0.8181818, 0.7651960, 0.7607207, 0.7606899, 0.7606899, . . .}. Thus, the method
converges to p∗ ≈ 0.7606899⇒ η∗ = (1− p∗)/2 = 0.1196551.

(d) The corresponding point x1 is given (see (a) above) in component form as
(x∗

1
, x∗

2
) = (1 − 2η∗, 1 − 2η∗)T = (0.7606899, 07606899)T. At this point, by

inserting the values of x1 and x2 just given, the gradient (again, see (a) above)
becomes

∇f |x=x1
≈ (−0.23931, 0.23931)T (7)

Thus, the scalar product of this gradient and the gradient computed in (a)
is zero. This is to be expected since, in gradient descent, successive search
directions are orthogonal to each other (provided that one, in each step, finds
the global minimum of φ(η), and then computes the next search direction at
the point thus found).

3. Given the specification in the problem formulation, the instructions (here denoted
Ij , j = 1, . . . 6) can be decoded as

I1 3216: r2 = r1 × c3
I2 3322: r3 = r2 × r2
I3 1215: r2 = r1 + c2
I4 1323: r3 = r2 + r3
I5 3115: r1 = r1 × c2
I6 2213: r2 = r1 − r3

Starting from r1 = x, r2 = r3 = 0, one then gets

r1 r2 r3
I1 x −x 0
I2 x −x x2

I3 x x+ 2 x2

I4 x x+ 2 x2 + x+ 2
I5 2x x+ 2 x2 + x+ 2
I6 2x −x2 + x− 2 x2 + x+ 2

Hence, the function obtained (from r2) at the end of the calculation is

g(x) = −x2 + x− 2. (8)



4. (a) Starting at Node 1 (as was given), the nearest node is either Node 2 or Node
4, depending on the value of p. For p = 0, Node 4 is at a distance of 1 from
Node 1, which is smaller than the distance (=2) from Node 1 to Node 2. We
note that d2

21
= 4, whereas

d2
41

= 12 + (4p)2 = 16p2 + 1. (9)

Thus, the transistion point where Node 2 and Node 4 are at the same distance
from Node 1 occurs when

16p2 + 1 = 4⇒ p =

√

3

16
. (10)

For 0 ≤ p ≤
√

3/16 we thus find that the NN path takes the form (ν1, ν4, ν2, ν3),

since Node 4 is clearly closer to Node 2 than Node 3. For p ≥
√

3/16, the start

of the sequence is (ν1, ν2) (for the case p =
√

3/16 two paths are possible, so

we can list both paths as possibilities). The identity of the third node again
depends on the value of p. The relevant squared distances are d2

32
= 4 and

d2
42

= 12 + (4p− 2)2 = 16p2 − 16p+ 5. (11)

Thus, the value of p where Node 3 and Node 4 are at an equal distance from
Node 2 occurs when

16p2 − 16p+ 5 = 4⇒ 16p2 − 16p+ 1 = 0⇒ p2 − p+
1

16
= 0, (12)

for which one finds the solutions

p =
1

2
±

√

1

4
−

1

16
=

1

2
±

√

3

16
. (13)

Here it is only the solution p = 1/2 +
√

3/16 that is relevant. This is easy to

see: For p < 1/2, Node 4 (rather than Node 3) is clearly closer to Node 2.

Thus, we find that the NN path takes the form (ν1, ν2, ν4, ν3) for
√

3/16 ≤ p ≤

1/2 +
√

3/16, and the form (ν1, ν2, ν3, ν4) for 1/2 +
√

3/16 ≤ p ≤ 1. At the

transition point, p = 1/2 +
√

3/16 we should consider both possibilities.

(b) The amount of deposited pheromone is equal to 1/D2 where D2 is the sum of
the lengths of each segment in the path traversed by the ant. Here, there are
three cases:



i. 0 ≤ p ≤
√

3

16
: In this case, D2 is given by

D2

1
= d2

41
+ d2

24
+ d2

32
+ d2

13
=

= 16p2 + 1 + 16p2 − 16p+ 5 + 4 + 16 = 32p2 − 16p+ 26 (14)

ii.
√

3

16
≤ p ≤ 1/2 +

√

3/16: Here, D2 is given by

D2

2
= d2

21
+ d2

42
+ d2

34
+ d2

13
= 4 + 16p2 − 16p+ 5 + 16p2 − 32p+ 17 + 16 =

= 32p2 − 48p+ 42 (15)

since
d2
34

= 12 + (4p− 4)2 = 16p2 − 32p+ 17 (16)

iii. 1/2 +
√

3

16
≤ p ≤ 1: In this case, D2 is computed as

D2

3
= d2

21
+ d2

32
+ d2

43
+ d2

14
=

= 4 + 4 + 16p2 − 32p+ 17 + 16p2 + 1 = 32p2 − 32p+ 26. (17)

In order to maximize 1/D2 one can minimize D2. In all three cases above, the
squared NN path length is parabola, with positive coefficient for the quadratic
term. The minima can occur either at p = 0 or p = 1, or at the boundaries
between the three cases, or at the (single) stationary point for each case. We
need to include the edges for each case since, as clearly stated in the problem
formulation, in cases where there are two options with equal length, consider

both options.

However, if, for a given case, the stationary point falls within the interval, then
there is no need to consider the edges, since the global minimum of the (con-
vex) parabola is at the stationary point. Thus, in theory, we have a total of
3× 3 = 9 cases to consider, but we start by investigating the stationary points
for each case.



Case i: Set d(D2

1
)/dp = 0. From the equation for D2

1
we have d(D2

1
)/dp =

64p − 16, so that p = 1/4. We note that 1/4 <
√

3/16. Thus, the stationary
point is indeed in the interval defining D1, so we need not consider the edges

(p = 0 and p→
√

3/16). Inserting this stationary point we find D2

1
= 32/16−

16/4 + 26 = 24.

Case ii: Set d(D2

2
)/dp = 0. From the equation for D2

2
we have d(D2

2
)/dp =

64p − 48, so that p = 3/4. We note that
√

3/16 < 3/4 < 1/2 +
√

3/16 so
that the stationary point is in the interval defining D2, meaning that here, too,
we need only consider the stationary point. Inserting the point found in the
expression for D2

2
, we get D2

2
= 32× 9/16− 48× 3/4 + 42 = 24.

Case iii: Set d(D2

3
)/dp = 0. From the equation for D2

3
we have d(D2

3
)/dp =

64p − 32, so that p = 1/2. However, this point is clearly not in the interval
defining D3, so it need not be considered further. Instead we need to consider

the two edges. First, set p = 1/2 +
√

3/16. Here we get D2

3
= 32 × (1/2 +

√

3/16)2− 32(1/2+
√

3/16)+26 = 24. Next, for p = 1, we get D2

3
= 32− 32+

26 = 26.

Thus, looking at all the cases above, we find that D2 is minimal for p = 1/4,

p = 3/4, and p = 1/2 +
√

3/16 (approaching from above, so that the NN

path is (ν1, ν2, ν3, ν4)) where it takes the value 24. The deposited amount of
pheromone is equal to 1/D2 = 0.041667.


