
Chalmers University of Technology, Department of Mechanics and Maritime Sciences
Teacher: Mattias Wahde, tel. 772 3727

Exam in FFR 105 (Stochastic optimization algorithms), 2019-10-30,
14.00-18.00, M.

The examiner will visit the exam rooms twice, around 15.00 and around 17.00. It will be
possible to review your results (exam and home problems) any day after Nov. 17.

In the exam, it is allowed to use a calculator, as long as it cannot store any text. Fur-
thermore, mathematical tables (such as Beta, Standard Math etc.) are allowed, provided
that no notes have been added. However, it is not allowed to use the course book, or any
lecture notes from the course, during the exam.

Note! In problems involving computation, show clearly how you arrived at your answer,
i.e. include intermediate steps etc. Only giving the answer will result in zero points on the
problem in question. There are four problems in the exam, and the maximum number of
points is 25.

1. (a) Premature convergence is a common problem in evolutionary algorithms. There
are different ways of avoiding this problem, by modifying or extending the var-
ious operators used (or their parameters). Consider a genetic algorithm that
(before modification) uses tournament selection (TS) and standard operators
for crossover and mutation, with typical parameter settings. How can the algo-
rithm be modified in order to prevent premature convergence (assuming that
TS is used even after the modification)? Describe two ways for doing so. (2p)

(b) In genetic algorithms, the concept of genes is central. In the biological coun-
terpart, genes serve the purpose of providing the necessary information for gen-
erating proteins by means of a process that involves two major steps. Name
and describe the two steps. (2p)

(c) Tournament selection (TS) and roulette-wheel selection (RWS) are two com-
monly used selection operators in evolutionary algorithms.

i. Consider a population consisting of five individuals with the fitness values
F1 = 3, F2 = 6, F3 = 7, F4 = 10, and F5 = 12. Using tournament selection
with a tournament size of two and a tournament selection parameter of 0.8,
what is the probability (in a single selection step) of selecting individual
4? (1p)

ii. Roulette-wheel selection relies on the cumulative, normalized fitness sum,
denoted φj. Write down the expression for φj , and explain clearly how it
is used in RWS. (2p)

iii. Consider again the population from part (i). If the random number r = 0.3
is drawn, which individual will be selected assuming that now RWS is used?
(1p)



2. (a) In the gradient descent method, starting from a given point xj (where x is
a vector and the index enumerates the iterations) iterates are computed such
that, once the search direction has been determined, the next iterate xj+1

depends only on the step length η, so that the function value at that point can
be expressed as some function φ(η). Consider now the problem of minimizing
the function f(x1, x2) = 2x2

1 + 3x1x2 + x2
2 − 4 using gradient descent, starting

from the point (x1, x2)
T = (1, 1)T. Find and write down the (non-normalized)

search direction (i.e. a vector with two components) and the expression for the
next iterate, inserting numerical values. Then derive (and simplify as much as
possible) the expression for φ(η), again with numerical values inserted. Give
your answer in the form a2η

2 + a1η + a0, where a0, a1, and a2 are constants.
Note: You do not have to carry out the line search. It is sufficient that you
find the search direction, the next iterate, and φ(η)! (2p)

(b) The Lagrange multiplier method is often used in problems with equality con-
straints. Use the Lagrange multiplier method to find the point on the sphere
x2
1 + x2

2 + x2
3 = 4 that is closest to the point p = (3, 1,−1)T. (3p)

3. In ant colony optimization (ACO), a population of artificial ants cooperate to find
the solution of a problem expressed in the form of a graph search. A common special
case is the travelling salesman problem (TSP).

(a) ACO is based on the cooperative behavior of ants and, in particular, a spe-
cial form of communication used by ants. Name and describe this form of
communication. (1p)

(b) The (probabilistic) method for generating paths is a central feature of ACO in
general, and ant system (AS) in particular. Write down the general equation
for the probability p(eij |S) for taking a step from a node j to another node
i for the special case of TSP, given a path fragment S. Describe carefully all
variables and parameters in the equation, and give typical numerical values for
the parameters. (2p)

(c) For TSP, AS generally finds the nearest-neighbour path (from a given start
node) very quickly. Assuming that the pheromone level on all edges is equal to
some value τ0 > 0, explain clearly why AS easily finds the nearest-neighbour
path. (1p)

(d) Consider a two-dimensional TSP problem with four nodes located at (1, 0),
(0, 1), (−1, 0), and (0,−2), and where the ant starts from the first node, i.e. at
(1, 0). Using AS, what is the probability that this ant will follow the nearest-
neighbour path, assuming that the pheromone levels are equal to τ0 > 0 on all
edges, and the parameters α and β are equal to 1 and 2, respectively? (2p)

4. (a) In particle swarm optimization (PSO) there is a specific mechanism that han-
dles the tradeoff between exploration and exploitation. Write down the general
equation for the velocity updates in PSO and describe, in detail, the mechanism
just mentioned. (2p)



(b) Consider now a simple one-dimensional application of PSO, in which one is
trying to minimize the function f(x) = (x − 1

4
)2, using a swarm size of three.

Initially the three particles are located at x = −1/3 (particle 1), x = 0 (particle
2), and x = 3/4 (particle 3), and their speeds are v = 3 (particle 1), v = 1/4
(particle 2) and v = −1 (particle 3). The parameters α and ∆t are both equal to
1, w is (here) kept constant at the value 1, and c1 = c2 = 2. Moreover, assume
(somewhat unrealistically) that the random numbers q and r are always equal
to 1. The initial range [xmin, xmax] is equal to [−2, 2], and the particle speeds
are thus restricted to a maximum of 4. Given these parameters, determine,
under the PSO algorithm

i. . . . the velocities and positions of all particles after one iteration (i.e. one
updating step for both velocities and positions). (2p)

ii. . . . the velocities and positions of all particles after two iterations (2p)



Stochastic optimization methods (FFR 105), 2019
Solutions to the exam (2019-10-30)

1. (a) Premature convergence can be prevented either by introducing a varying mu-
tation rate (based on the degree of diversity in the population) or by reducing
the crossover probability pc. Another alternative is to introduce some form of
mating restriction (as is done in diffusion models). Using fitness ranking would
have been an alternative if roulette-wheel selection were used, but in this case
it was stated that tournament solution would be used, thus excluding fitness
ranking as an option.

(b) The two steps are called transcription and translation. In transcription, the
information in a gene (in the form of a sequence of bases, from the alphabet
A, C, G, and T) is read by RNA polymerase, resulting in an mRNA molecule,
containing the same information (albeit coded slightly differently) as the gene.
In translation, the mRNA molecule is used as a template when forming a chain
of amino acids (i.e. a protein). Each codon, i.e. a sequence of three bases in
the mRNA molecule, e.g. CAA, encode a particular amino acid. Some codons
encode the start and stop command. Once the stop command has been reached
the amino acid chain is complete.

(c) i. The number of possible pairs of individuals equals 5 × 5 = 25. Each of
these pairs have equal probability of occurring, namely 1/25. Of those
pairs, nine involved individual 4, namely (1,4), (2,4), (3,4), (4,4), (5,4),
(4,1),(4,2),(4,3),(4,5). Individual 4 is the better individual in 6 cases,
namely (4,1),(4,2),(4,3),(1,4),(2,4), and (3,4) and the worse individual in
two cases, namely (4,5) and (5,4). In the remaining case, (4,4), individ-
ual 4 is selected with probability 1. Thus, with a tournament selection
parameter of 0.8, one finds

p4 =
1

25
(6× 0.8 + 2× (1− 0.8) + 1) = 0.248. (1)

ii. The expression for the cumulative normalized fitness sum is

φj =

∑j
i=1 Fi

∑N
i=1 Fi

, (2)

where Fi denotes the fitness of individual i and N is the population size.
In RWS, a random number r ∈ [0, 1[ is drawn, and the selected individual
is taken as the one with the smallest j that satisfies φj > r.



iii. The fitness sum equals 38. Using the equation for φj one finds φ1 =
3/38 ≈ 0.0789, φ2 = 9/38 ≈ 0.2368, φ3 = 16/38 ≈ 0.4211 > 0.3. Thus,
the individual with the smallest j that satisfies φj is individual 3, which
will thus be selected.

2. (a) The search direction is the negative gradient (−∇f). Here, the gradient takes
the form

∇f(x1, x2) =

(

∂f

∂x1
,
∂f

∂x2

)T

= (4x1 + 3x2, 3x1 + 2x2)
T , (3)

where T denotes the transpose of the vector. Thus,

−∇f(x1, x2)|x1=1,x2=1 = −(7, 5)T . (4)

In gradient descent, the next iterate xi+1 is given by

xi+1 = xi − η∇f(xi). (5)

At the point (1, 1)T , one then obtains

xi+1 = (1, 1)T − η(7, 5)T = (1− 7η, 1− 5η)T . (6)

At this point, the function thus becomes

φ(η) ≡ f(1− 7η, 1− 5η) = 2(1− 7η)2 + 3(1− 7η)(1− 5η) + (1− 5η)2 − 4

= 2− 28η + 98η2 + 3− 15η − 21η + 105η2 + 1− 10η + 25η2 − 4 =

228η2 − 74η + 2. (7)

(b) The function to be minimized is the distance (squared) from a point (x1, x2, x3)
T

to the point P, given by

f(x1, x2, x3) = (x1 − 3)2 + (x2 − 1)2 + (x3 + 1)2 (8)

The constraint h takes the form

h(x1, x2, x3) = x2
1 + x2

2 + x2
3 − 4 = 0. (9)

In order to use the Lagrange multiplier method we set up L(x1, x2, x3, λ) as

L(x1, x2, x3, λ) = f(x1, x2, x3) + λh(x1, x2, x3). (10)



Taking the partial derivatives of L with respect to x1, x2, x3 and λ one obtains,
in order, the equations

2(x1 − 3) + 2λx1 = 0, (11)

2(x2 − 1) + 2λx2 = 0, (12)

2(x3 + 1) + 2λx3 = 0, (13)

and
x2
1 + x2

2 + x2
3 − 4 = 0. (14)

From the first of those equations, one gets x1(1 + λ) = 3, so that

x1 =
3

1 + λ
. (15)

From the second and third equation, one obtains, in a similar fashion,

x2 =
1

1 + λ
. (16)

x3 = −
1

1 + λ
. (17)

Using the constraint, one thus finds

9

(1 + λ)2
+

1

(1 + λ)2
+

1

(1 + λ)2
= 4, (18)

so that

(1 + λ)2 =
11

4
. (19)

Therefore λ = −1 ±
√
11
2
. With these values of λ one finally obtains the two

pointsQ1 = (6, 2,−2)/
√
11 andQ2 = (−6,−2, 2)/

√
11. It is then easy to check

that the smallest value of f occurs at Q1 (and the largest value occurs at Q2).

3. (a) Cooperative behavior in ants depends on stigmergy, which is a form of commu-
nication relying on (local) modification of the environment: As the ants move,
they deposit pheromones (a form of volatile hydrocarbon) that other ants can
(and often will) follow.



(b) The probability p(eij |S) takes the form

p(eij|S) =
ταijη

β
ij

∑

νl /∈LT(S) τ
α
ljη

β
lj

, (20)

where τij is the pheromone level on the edge from node j to node i, ηij is the
visibility (which for TSP takes the form 1/dij, where dij is the distance from
node j to node i). LT(S) is the tabu list, i.e. the list of all nodes visited so
far. α is a parameter that usually takes the value 1, whereas the parameter β
usually takes values in the range 2 to 5.

(c) If the pheromones are equal on all edges (as was assumed here), the probability
of following a given edge is proportional to ηβij = (1/dij)

β . Now, since the value
of β generally is (at least) 2, it is evident that the probability of going to the
nearest node (for which 1/dij is maximal) will be higher than the probability
of going to any other node. Thus, it is not unlikely that at least one or a few
ants will follow the nearest-neighbour path in the first iteration (or one of the
first iterations).

(d) Starting from Node 1, at (1, 0), the nearest node is clearly Node 2 (at (0, 1)),
which is at a distance d21 =

√
2. The distances to the other nodes equal d31 = 2

and d41 =
√
5. Since the pheromone levels are the same on all edges, one can

neglect them, and the probability of going from Node 1 to Node 2 thus takes
the form

p(e21|S = {ν1}) =
(

1
d21

)2

(

1
d21

)2
+
(

1
d31

)2
+
(

1
d41

)2 =
1
2

1
2
+ 1

4
+ 1

5

=
10

19
. (21)

Once the artificial ant reaches Node 2, it can either go to Node 3 (distance
d32 =

√
2) or to Node 4 (distance d42 = 3). The probability of moving to the

nearest node (Node 3) is given by

p(e32|S = {ν1, ν2}) =
(

1
d32

)2

(

1
d32

)2
+
(

1
d42

)2 =
1
2

1
2
+ 1

9

=
9

11
. (22)

At Node 3, the ant has no option but to go to Node 4 (with probability 1),
from which it then returns to Node 1. Thus, the probability of traversing the
nearest-neighbour path, starting from Node 1, equals

p1234 =
10

19
× 9

11
=

90

209
≈ 0.431. (23)



4. (a) The velocity update for particle i is given by

vij ← wvij + c1q





xpb
ij − xij

∆t



+ c2r

(

xsb
j − xij

∆t

)

, j = 1, . . . , n, (24)

where w, the inertia weight, handles the tradeoff between exploration and
exploitation. If w > 1, exploration is favored. If instead w < 1, the particle
focuses on exploitation of the results already found. Normally, one starts with
a value of w of around 1.4, then reduces w by a factor β ≈ 0.99 until w reaches
a lower limit of around 0.3− 0.4, where it is then kept constant.

(b) i. Initially, the function values are 49/144 (particle 1), 1/16 (particle 2), and
1/4 (particle 3). Thus, the swarm best position is equal to the position of
particle 2 (i.e. x = 0). With the simplifications, the velocity update takes
the form

vi ← vi + 2(xpb
i − xi) + 2(xsb − xi), i = 1, 2, 3. (25)

One then obtains:

v1 = 3 + 2(−1/3− (−1/3)) + 2(0− (−1/3)) = 11/3, (26)

v2 = 1/4 + 2(0− 0) + 2(1/3− 1/3) = 1/4, (27)

and
v3 = −1 + 2(3/4− 3/4) + 2(0− 3/4) = −5/2. (28)

Thus, using the equation x← x+ v, the new positions become

x1 = −1/3 + 11/3 = 10/3, (29)

x2 = 0 + 1/4 = 1/4, (30)

x3 = 3/4− 5/2 = −7/4. (31)

ii. In the second iteration, the swarm best position is x = 1/4, i.e. the position
of particle 2 (which, of course, also is the particle best position for that
particle). The particle best position is unchanged for particle 1 and particle
3, since the function values at their new positions exceeds those obtained
at their initial positions. Using the same equations as above, one obtains

v1 = 11/3 + 2(−1/3− 10/3) + 2(1/4− 10/3) = −59/6. (32)



However, this value exceeds (in magnitude) the maximum (negative) speed
of -4, meaning that the actual speed of the particle will be v3 = −4 instead.
For particle 2 one gets

v2 = 1/4 + 2(1/4− 1/4) + 2(1/4− 1/4) = 1/4 (33)

and for particle 3

v3 = −5/2 + 2(3/4− (−7/4)) + 2(1/4− (−7/4)) = 13/2. (34)

This value is larger than the limit of 4, so that the actual speed will be
v3 = 4 instead. Thus, finally, one obtains

x1 = 10/3− 4 = −2/3, (35)

x2 = 1/4 + 1/4 = 1/2, (36)

and
x3 = −7/4 + 4 = 9/4. (37)


