
Chalmers University of Technology, Department of Applied Mechanics
Teacher: Mattias Wahde, tel. 772 3727

Exam in FFR 105 (Stochastic optimization algorithms), 2015-10-28,
14.00-18.00, M.
The examiner will visit the exam rooms twice, around 15.00 and around 17.00.

It will be possible to review your results (for the exam and the home problems) during
the week starting Nov. 16.

In the exam, it is allowed to use a calculator, as long as it cannot store any text. Fur-
thermore, mathematical tables (such as Beta, Standard Math etc.) are allowed, provided
that no notes have been added. However, it is not allowed to use the course book, or any
lecture notes from the course, during the exam.

Note! In problems involving computation, show clearly how you arrived at your answer,
i.e. include intermediate steps etc. Only giving the answer will result in zero points on
the problem in question.

There are four problems in the exam, and the maximum number of points is 25.

1. (a) Premature convergence is a common problem when using genetic algorithms.
Define and describe this problem in detail. Next, assuming that (for a particu-
lar genetic algorithm) the population size is set to a given, fixed value, and that
tournament selection is used, with a fixed tournament selection probability, in-
troduce and describe two different ways of preventing premature convergence.
(You may describe more than two ways, but you are not required to do so:
Note that incorrect, additional descriptions may also result in a deduction of
points). (3p)

(b) In genetic algorithms, the concept of genes is central. In the biological coun-
terpart, genes serve the purpose of providing the necessary information for gen-
erating proteins by means of a process that involves two major steps. Name
and describe the two steps. (2p)

(c) Ant colony optimization is based on the cooperative behavior of ants and, in
particular, a special form of communication used by ants. Name and describe,
in as much detail as possible, this form of communication. (1p)

Continued on the back of this page.



(d) In the Ant system (AS) algorithm, in every iteration, paths are generated prob-
abilistically for each ant. Once the paths have been generated, the pheromone
levels are updated. For the case of the standard travelling salesman problem
(TSP), describe in detail (with equations and clear descriptions of each equa-
tion) exactly how the pheromone levels are updated. Note: You should only
describe the pheromone update equations, not the entire AS algorithm! (2p)

(e) Gradient descent is a classical optimization method, in which one follows the
negative gradient from a given starting point towards a (local) minimum. In
this method, starting from a given point xj (where x is a vector and the index
enumerates the iterations) one computes iterates such that, once the search
direction has been determined, the next iterate xj+1 will depend only on the
step length η, so that the function value at that point can be expressed as
some function φ(η). Consider now the problem of minimizing the function
f(x1, x2) = 2x21 +3x1x2 +x22−4 using gradient descent, starting from the point
(x1, x2) = (1, 1). Find, and write down, the search direction (i.e. a vector with
two components) and the expression for the next iterate, inserting numerical
values. Then derive (and simplify as much as possible) the expression for
φ(η), again with numerical values inserted. Give your answer in the form
a2η

2 + a1η + a0, where a0, a1, and a2 are constants. Note: You do not have to
carry out the line search. It is sufficient that you find the search direction, the
next iterate, and φ(η)! (2p)

2. In order to study GAs analytically, one often uses functions of unitation, i.e. objec-
tive functions in which the fitness depends only on the number (j) of ones in the
chromosome.

(a) Consider a simple GA, with a population size of 1, and where the (binary)
chromosome is changed using mutations only. The new chromosome is kept
if it is better (higher fitness) than the previous one, otherwise it is discarded.
Using the Onemax function (f(j) = j) as the fitness function, and setting the
mutation rate pmut to k/m, where m is the chromosome length, and k � m
is a positive integer, derive an estimate for the runtime of this GA, i.e. the
number of iterations required to reach the global optimum. (3p)

(b) In some cases, one makes the further assumption that the population size is
infinite. Consider such a case, in which the (binary) chromosomes are initialized
randomly, and where a GA with selection only (i.e. no crossover or mutations)
is applied to the problem of maximizing the function (of unitation)

f(j) = j
(

1 − j

m

)
, (1)

where m, again, is the chromosome length. Compute

i. The average fitness of the initial population. (1p)

ii. The probability distribution p2(j) in the second generation (i.e. after one
fitness-proportional selection step). (1p)



3. (a) The Lagrange multiplier method depends on a particular relation involving the
objective function f(x1, x2, . . .) and the equality constraint function (assuming,
here, that there is only one such constraint) h(x1, x2, . . .). Write down this
relation (in equation form) and also explain why the (local) optima of the
objective function, subject to the constraint, occur at the points where this
relation holds. You should draw a figure (for the case of two dimensions) as a
part of your explanation, but you must also describe the figure clearly. (2p)

(b) Use the Lagrange multiplier method to find the minimum value and the max-
imum value of the function

f(x1, x2) = x21x2 + 2x2, (2)

subject to the constraint
x21 + x22 − 1 = 0. (3)

(2p)

4. (a) In particle swarm optimization (PSO), there is a specific mechanism for hand-
ling the tradeoff between exploration and exploitation. Write down the general
equation for the velocity updates in PSO and describe, in detail, the mechanism
just mentioned. (2p)

(b) Consider now a simple one-dimensional application of PSO, in which one is
trying to minimize the function f(x) = (x − 1

4
)2, using a swarm size of three.

Initially the three particles are located at x = −1/3 (particle 1), x = 0 (particle
2), and x = 3/4 (particle 3), and their speeds are v = 3 (particle 1), v = 1/4
(particle 2) and v = −1 (particle 3) The parameters α and ∆t are both equal to
1, w is (here) kept constant at the value 1, and c1 = c2 = 2. Moreover, assume
(somewhat unrealistically) that the random numbers q and r are always equal
to 1. The initial range [xmin, xmax] is equal to [−2, 2], and the particle speeds
are thus restricted to a maximum of 4. Given these parameters, determine,
under the PSO algorithm

i. the velocities and positions of all particles after one iteration (i.e. one
updating step for both velocities and positions). (2p)

ii. the velocities and positions of all particles after two iterations (2p)



Stochastic optimization methods (FFR 105), 2015
Solutions to the exam (2015-10-28)

1. (a) Premature convergence occurs when the population converges to a suboptimal
solution. This can happen when, in the early generations, one or a few indi-
viduals have much higher fitness than the others, but still well below the best
possible fitness. In many cases, the fitness landscape may have very narrow
peaks, making it difficult to find those better solutions.

Through selection and crossover, the (relatively speaking) high-fitness individ-
uals quickly spread their genetic material in the population and, in some cases,
the population may then become stuck near the suboptimal solution, unless one
or a few individuals happen to stumble upon a path towards a better solution
before premature convergence has occurred.

Premature convergence can be prevented in many ways, for example using
varying mutation rates (such that the mutation rate is increased whenever the
diversity of the population becomes too low, and vice versa) or some form of
mating restriction (for example, by means of diffusion models, in which the
individuals are placed on an imaginry grid and where each individuals is only
allowed to mate with the nearest neighbours).

(b) The two steps are called transcription and translation. In transcription, the
information in a gene (in the form of a sequence of bases, from the alphabet
A, C, G, and T) is read by RNA polymerase, resulting in an mRNA molecule,
containing the same information (albeit coded slightly differently) as the gene.
In translation, the mRNA molecule is used as a template when forming a chain
of amino acids (i.e. a protein). Each codon, i.e. a sequence of three bases in
the mRNA molecule, e.g. CAA, encode a particular amino acid. Some codons
encode the start and stop command. Once the stop command has been reached
the amino acid chain is complete.

(c) The form of communication is referred to as stigmergy. This is a process of
indirect communication by means of local modification of the environment, in
which an ant deposits a volatile hydrocarbon (a pheromone) that other ants can
perceive. Ants tend to move in the direction of highest pheromone scent. Note
that the pheromones will evaporate after a while, unless the path is replenished
by additional ants.

(d) The pheromones are updated as follows: Let Dk denote the length of the tour
generated by ant k. The pheromone level on edge eij is then modified as

∆τ
[k]
ij =

1

Dk

, (1)

if ant k traversed the edge ej. If not, ∆τ
[k]
ij = 0. Once all ants have been

considered, the total change in the pheromone level on edge eij is computed as

∆τij =
N∑
k=1

∆τ
[k]
ij , (2)

where N is the number of ants. Finally, evaporation is applied, so that

τij ← (1− ρ)τij + ∆τij, (3)



where ρ is the evaporation rate (typically set to 0.5).

(e) The search direction is the negative gradient (−∇f). Here, the gradient takes
the form

∇f(x1, x2) =

(
∂f

∂x1
,
∂f

∂x2

)T

= (4x1 + 3x2, 3x1 + 2x2)
T , (4)

where T denotes the transpose of the vector. Thus,

−∇f(x1, x2)|x1=1,x2=1 = −(7, 5)T . (5)

In gradient descent, the next iterate xi+1 is given by

xi+1 = xi − η∇f(xi). (6)

At the point (1, 1)T , one then obtains

xi+1 = (1, 1)T − η(7, 5)T = (1− 7η, 1− 5η)T . (7)

At this point, the function thus becomes

φ(η) ≡ f(1− 7η, 1− 5η) = 2(1− 7η)2 + 3(1− 7η)(1− 5η) + (1− 5η)2 − 4

= 2− 28η + 98η2 + 3− 15η − 21η + 105η2 + 1− 10η + 25η2 − 4 =

228η2 − 74η + 2. (8)

2. (a) Proof: See Sect. B2.4 in the course book (pp. 181-182).

(b) i. With random initialization the initial probability distribution becomes

p1(j) = 2−m

(
m

j

)
. (9)

The average fitness of the initial population can be computed as

F 1 =
m∑
j=0

f(j)p1(j) = 2−m
m∑
j=0

j

(
m

j

)
− 2−m

m

m∑
j=0

j2
(
m

j

)
. (10)

Starting from the binomial theorem, with a = x, b = 1, taking the deriva-
tive with respect to x, and then setting x = 1, one obtains

m∑
j=0

j

(
m

j

)
= m2m−1. (11)

If, instead of setting x = 1, one instead multiplies by x, takes the derivative
again, and finally sets x = 1, one gets

m∑
j=0

j2
(
m

j

)
= m(m+ 1)2m−2. (12)

Thus, inserting the expressions for these two sums, one finally obtains

F 1 = 2−mm2m−1 − 2−m

m
m(m+ 1)2m−2 =

m

2
− m+ 1

4
=
m− 1

4
. (13)



ii. The probability distribution in the second generation is given by

p2(j) =
f(j)p1(j)∑m
j=0 f(j)p1(j)

=
f(j)p1(j)

F 1

=
4j

m− 1

(
1− j

m

)
2−m

(
m

j

)
. (14)

3. (a) The condition is that the gradient of f should be parallel to the gradient of
h, i.e. that ∇f + λ∇h = 0, where λ (the Lagrange multiplier) is a parame-
ter. This relation between the gradients can be understood by considering the
level curves of f : By drawing a figure showing those levels curves, as well as
the constraints, one can illustrate the fact that local optima occur where the
gradient of f is parallel to the gradient of h. At those points, any movement
along the constraint curve h = 0 will result in either an increase of f (at a
local minimum) or a decrease of f (at a local maximum). See also Fig. 2.8 in
the course book.

(b) In this case, the function L(x1, x2, λ) takes the form

L(x1, x2, λ) = f(x1, x2) + λh(x1, x2) = x21x2 + 2x2 + λ(x21 + x22 − 1). (15)

Setting the gradient of L to zero, one finds

∂L

∂x1
= 2x1x2 + 2λx1 = 0, (16)

∂L

∂x2
= x21 + 2 + 2λx2 = 0, (17)

∂L

∂λ
= x21 + x22 − 1 = 0. (18)

The first equation gives x1 = 0 or λ = −x2. With x1 = 0, the third equation
gives x2 = ±1. Thus, the two points (0, 1)T and (0,−1)T are obtained. If
instead λ = −x2, the second equation gives x21 = −2 + 2λ2. Inserting this into
the third equation, one gets

−2 + 2λ2 + λ2 − 1 = 0, (19)

so that 3λ2 = 3, i.e. λ = ±1. Thus x2 = −λ = ±1 and x21 = −2 + 2λ2 = 0.
This again gives the two points already considered above, namely (0, 1)T and
(0,−1)T . The function takes the value 2 at (0, 1)T and -2 at (0,−1)T . Thus,
the maximum value of 2 occurs at (0, 1)T , and the minimun value of −2 occurs
at (0,−1)T .

4. (a) The velocity update for particle i is given by

vij ← wvij + c1q

xpbij − xij
∆t

+ c2r

(
xsbj − xij

∆t

)
, j = 1, . . . , n, (20)

where w, the inertia weight, handles the tradeoff between exploration and
exploitation. If w > 1, exploration is favored. If instead w < 1, the particle
focuses on exploitation of the results already found. Normally, one starts with
a value of w of around 1.4, then reduces w by a factor β ≈ 0.99 until w reaches
a lower limit of around 0.3− 0.4, where it is then kept constant.



(b) i. Initially, the function values are 49/144 (particle 1), 1/16 (particle 2), and
1/4 (particle 3). Thus, the swarm best position is equal to the position of
particle 2 (i.e. x = 0). With the simplifications, the velocity update takes
the form

vi ← vi + (xpbi − xi) + (xsb − xi), i = 1, 2, 3. (21)

One then obtains:

v1 = 3 + 2(−1/3− (−1/3)) + 2(0− (−1/3)) = 11/3, (22)

v2 = 1/4 + 2(0− 0) + 2(1/3− 1/3) = 1/4, (23)

and
v3 = −1 + 2(3/4− 3/4) + 2(0− 3/4) = −5/2. (24)

Thus, using the equation x← x+ v, the new positions become

x1 = −1/3 + 11/3 = 10/3, (25)

x2 = 0 + 1/4 = 1/4, (26)

x3 = 3/4− 5/2 = −7/4. (27)

ii. In the second iteration, the swarm best position is x = 1/4, i.e. the position
of particle 2 (which, of course, also is the particle best position for that
particle). The particle best position is unchanged for particle 1 and particle
3, since the function values at their new positions exceeds those obtained
at their initial positions. Using the same equations as above, one obtains

v1 = 11/3 + 2(−1/3− 10/3) + 2(1/4− 10/3) = −59/6. (28)

However, this value exceeds (in magnitude) the maximum (negative) speed
of -4, meaning that the actual speed of the particle will be v3 = −4 instead.
For particle 2 one gets

v2 = 1/4 + 2(1/4− 1/4) + 2(1/4− 1/4) = 1/4 (29)

and for particle 3

v3 = −5/2 + 2(3/4− (−7/4)) + 2(1/4− (−7/4)) = 13/2. (30)

This value is larger than the limit of 4, so that the actual speed will be
v3 = 4 instead. Thus, finally, one obtains

x1 = 10/3− 4 = −2/3, (31)

x2 = 1/4 + 1/4 = 1/2, (32)

and
x3 = −7/4 + 4 = 9/4. (33)


