
Chalmers University of Technology, Department of Applied Mechanics
Teacher: Mattias Wahde, tel. 772 3727

Exam in FFR 105 (Stochastic optimization algorithms), 2011-10-17,
14.00-18.00, V.
It is allowed to use a calculator, as long as it cannot store any text. Furthermore, math-
ematical tables (such as Beta, Standard Math etc.) are allowed, provided that no notes
have been added. However, it is not allowed to use the course book, or any lecture notes
from the course, during the exam.

Note! In problems involving computation, show clearly how you arrived at your answer,
i.e. include intermediate steps etc. Only giving the answer will result in zero points on
the problem in question.

There are four problems in the exam, and the maximum number of points is 25.

1. (a) When generating new individuals in a genetic algorithm, several different oper-
ators are used, namely selection, crossover and mutation. Name and describe
two selection methods. For each method, you should include a clearly described
algorithm for selecting one individual, given a random number r in the range
[0, 1[. (3p)

(b) Particle swarm optimization (PSO) is a stochastic optimization method some-
what similar to genetic algorithms. Write down the standard PSO algorithm
and describe it in detail. Include clear definitions of all variables and parame-
ters used in your description. In particular, describe how the tradeoff between
exploration and exploitation (of the results already found) is handled in PSOs.
(4p)

(c) Newton’s method is an iterative method for finding local optima of an objec-
tive function f(x). In the one-dimensional case, the method is referred to as
the Newton-Raphson method. Starting from the Taylor (series) expansion of
f(x), derive Newton-Raphson’s method, i.e. the equation that determines how
to obtain the new iterate xj+1, starting from the previous iterate xj . Note:
Provide a clear derivation of the equation. Just writing down the equation will
not give any points. (2p)

(d) In optimization, convexity of the objective function is a desirable property.
Determine whether or not the function

f(x1, x2) = 4x2
1 − 5x1x2 + 3x2

2 − 7x2 − 4 (1)

is convex. (1p)



2. Consider a function adaptation task in which linear genetic programming (LGP) is
used for finding an unknown function f(x) based on measurements taken for several
different values of x. The LGP chromosomes consist of a sequence of instructions,
each represented using four genes. The first gene in each instruction represents the
operator, the second gene reprents the destination register, and the two remaining
genes are the operands. In this task, there are three variable registers (denoted
r1, r2, and r3), and three constant registers (denoted c1, c2, and c3). There are
four operators, namely o1 (addition), o2 (subtraction), o3 (multiplication) and o4

(division). Initially the constant registers are set as c1 = 1, c2 = 2 and c3 = −1.
The variable registers are initiated as r1 = x, r2 = r3 = 0. The output (i.e. the
estimate f̂(x)) is taken as the contents of r2. The operands are chosen from the set
{a1, . . . a6} = {r1, r2, r3, c1, c2, c3}.
(a) Consider an LGP chromosome given by

c1 = 1214 3315 3123 3333 1323 4213. (2)

Which function is obtained when decoding this chromosome? (2p)

(b) During mutation, the fourth gene in the chromosome c1 is mutated from 4 to
1. What will be the corresponding function? (1p)

3. Ant colony optimization (ACO), which is inspired by the behavior of ants, is typ-
ically used for solving routing problems, such as the traveling salesman problem
(TSP).

(a) Consider the construction graph (for TSP) shown in Fig. 1 (see next page). If
the level of artificial pheromone is equal to 0.5 for all edges eij , what is the
probability that an ant will follow the nearest neighbour path, starting from
node 1? For the parameter values, choose α = 1 and β = 2. Make sure to
include all relevant intermediate steps in your calculations! (3p)

(b) Several ACO algorithms have been defined, one of which is the Max-min ant
system (MMAS) in which (among other things) pheromone limits are imposed.
Consider again the construction graph for TSP in Fig. 1. Assuming that MMAS
is being used, with N = 4 artificial ants, and that the initial pheromone levels
τij in this case are equal to 1/(ρDnn) for all edges eij , where Dnn is the length
of the nearest-neighbour path starting from node 1 (i.e. the path considered
above), determine the pheromone levels for all edges eij after the first iteration,
where the four ants followed the paths (1, 4, 2, 5, 3), (2, 4, 1, 3, 5), (5, 3, 1, 4, 2),
and (1, 2, 3, 4, 5), respectively. (Note that, as usual, the ants also return to
their start node in the final step.) For the pheromone updating rule, set the
evaporation rate ρ to 0.5, and the pheromone limits τmin and τmax to 0.1 and
1/(ρDnn), respectively. (4p)



Figure 1: Construction graph for Problem 3. The nodes are located at (1, 0) (node 1),
(3, 0) (node 2), (4, 1) (node 3), (4, 2) (node 4), and (0, 2) (node 5).

4. The penalty method is a classical optimization method (which, however, also can
be used in connection with stochastic optimization) for solving constrained mini-
mization problems.

(a) In the penalty method a penalty function is used for measuring the degree to
which the constraints are violated for a given variable vector x. The penalty
function is then added to the objective function f(x). Write down the gen-
eral expression for the penalty function, carefully explaining all variables and
parameters. (1p)

(b) Use the penalty method to find the minimum of the function

f(x1, x2) = (x1 − 6)2 + (x2 − 7)2, (3)

subject to the constraints

g1(x1, x2) = −3x1 − 2x2 + 6 ≤ 0, (4)

g2(x1, x2) = −x1 + x2 − 3 ≤ 0, (5)

g3(x1, x2) = x1 + x2 − 7 ≤ 0, (6)

and

g4(x1, x2) =
2

3
x1 − x2 − 4

3
≤ 0, (7)

Hint: Start at the unconstrained minimum, and examine the constraints care-
fully. It is also a good idea to plot the set of feasible points before starting
with the actual minimization. (4p)



Stochastic optimization methods (FFR 105), 2011
Solutions to the exam (20111017)

1. (a) Roulette-wheel selection and tournament selection, see pp. 48-50 in the course
book. For roulette-wheel selection, the quantities

φj =

∑j
i=1 Fi∑N
i=1 Fi

(1)

are generated for j = 1, 2, . . . , N . Next a random number r ∈ [0, 1[ is drawn
and the selected individual is taken as the individual with the smallest j that
satisfies φj > r. For tournament selection (with tournament size 2), two in-
dividuals are picked randomly from the population. Next a random number
r ∈ [0, 1[ is generated. If r < ptour (typically around 0.7-0.8), the better of the
two individuals is chosen, if not, the worse individual is chosen. Tournament
selection can also be generalized to the case of tournaments with more than
two participants. In that case, the best individual (of the j randomly picked
individuals) is selected with probability ptour as just described. If this individ-
ual is not selected, it is removed from the tournament, a new random number r
is drawn, and the best of the remaining individuals is selected with probability
ptour etc. Note that both selection methods take place with replacement. That
is, a given individual can be selected several times.

(b) The standard PSO is given in Algorithm 5.1 in the book but with the inertia
term added, see Eq. (5.20) in the book. For full points, the description should
include the five steps of the algorithm (initialization, evaluation, best position
updates (particle best and swarm best), position and velocity updates, and the
return to step 2. The indices i (enumerating particles) and j (enumerating
dimensions) should be introduce correctly in all parts of the algorithm; for
example, the swarm best vector xsb

j should have only one index. Furthermore,
the velocity update equation should be clearly described (the cognitive and
social terms, with the two constants c1 and c2 and the random numbers q
and r). The velocity restriction should be defined. The trade-off between
exploration and exploitation is taken care of by the inertia term, which should
vary from around 1.4 down to 0.3-0.4.

(c) Making a Taylor expansion of f(x), one obtains

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)

2 ≡ f[2](x). (2)

Taking the derivative and setting it to zero, one finds the stationary point.
Thus

f ′
[2](x) = 0 ⇔ f ′(x0) + (x− x0)f

′′(x0) = 0. (3)

Solving this equation, one obtains

x? = x0 − f ′(x0)

f ′′(x0)
. (4)

Thus, the iteration rule takes the form

xj+1 = xj − f ′(xj)

f ′′(xj)
. (5)



(d) The convexity of a function can be investigated by considering the properties
of the Hessian. For the function in question, the Hessian equals

H =

 ∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x1∂x2

∂2f
∂x2

2

 =

(
8 -5
-5 6

)
, (6)

with eigenvalues 7±√26 which are both larger than zero. Thus, the function
is convex.

2. (a) Decoding the chromosome, one obtains:

1214 ⇔ r2 := r1 + c1

3315 ⇔ r3 := r1 × c2

3123 ⇔ r1 := r2 × r3

3333 ⇔ r3 := r3 × r3

1323 ⇔ r3 := r2 + r3

4213 ⇔ r2 := r1/r3

With the initial values r1 = x, r2 = r3 = 0, and with c1 = 1, c2 = 2, and
c3 = −1, one obtains:

Step 1: r1 = x, r2 = x + 1, r3 = 0
Step 2: r1 = x, r2 = x + 1, r3 = 2x
Step 3: r1 = 2x(x + 1), r2 = x + 1, r3 = 2x
Step 4: r1 = 2x(x + 1), r2 = x + 1, r3 = 4x2

Step 5: r1 = 2x(x + 1), r2 = x + 1, r3 = 4x2 + x + 1
Step 6: r1 = 2x(x + 1), r2 = 2x(x + 1)/(4x2 + x + 1), r3 = 4x2 + x + 1

Thus, the answer is

f̂(x) =
2x2 + 2x

4x2 + x + 1
. (7)

(b) The only difference compared to the case considered above is that the first
instruction now takes the form

1211 ⇔ r2 := r1 + r1

With the same initial values as above, one obtains

Step 1: r1 = x, r2 = 2x, r3 = 0
Step 2: r1 = x, r2 = 2x, r3 = 2x
Step 3: r1 = 4x2, r2 = 2x, r3 = 2x
Step 4: r1 = 4x2, r2 = 2x, r3 = 4x2

Step 5: r1 = 4x2, r2 = 2x, r3 = 4x2 + 2x
Step 6: r1 = 4x2, r2 = 4x2/(4x2 + 2x), r3 = 4x2 + 2x

Thus, the answer is

f̂(x) =
4x2

4x2 + 2x
=

2x

2x + 1
(x 6= 0) (8)



3. (a) It is easy to see that the nearest-neighbour path starting from node 1 is 1 →
2 → 3 → 4 → 5 (with a return to node 1 as the final step). The equation for
determining the probability of a move from node j to node i takes the following
form

p(eij |S) =
τα
ijη

β
ij∑

νl /∈LT (S) τα
ljη

β
lj

, (9)

where ηij = 1/dij. Since the pheromone levels are equal on all edges, the τij

terms cancel out, and one is left with the expression

p(eij |S) =
ηβ

ij∑
νl /∈LT (S) ηβ

lj

(10)

In node 1, there are four possible moves, with distances d21 = 2, d31 =
√

10,
d41 =

√
13, and d51 =

√
5. With β = 2 the probability of moving to node 2

becomes

p(e21|S = {ν1}) =
1
4

1
4

+ 1
10

+ 1
13

+ 1
5

≈ 0.398773. (11)

In node 2, there are three possible moves, with distances d32 =
√

2, d42 =
√

5,
and d52 =

√
13. Thus

p(e32|S = {ν1, ν2}) =
1
2

1
2

+ 1
5

+ 1
13

≈ 0.643564. (12)

In node three, there are two possible moves, with distances d43 = 1 and d53 =√
17. Thus

p(e43|S = {ν1, ν2, ν3}) =
1

1 + 1
17

≈ 0.944444. (13)

The remaining steps, from node 4 to node 5 and then back to node 1, take place
with probability 1. Thus, the probability of following the nearest-neighbour
path, starting at node 1, becomes

p12345 = p21 × p32 × p43 ≈ 0.242. (14)

(b) The length of the nearest-neighbour path starting from node 1 equals

L12345 = 2 +
√

2 + 1 + 4 +
√

5 ≈ 10.65 (15)

length units. The initial pheromone level τij is thus equal to

τij =
1

ρDnn
≈ 0.1878. (16)

In MMAS, only the best ant is allowed to deposit pheromone. One can easily
see that the path of the fourth ant is the shortest (i.e. the best). Since this
path is the nearest-neighbour path considered above, we can write

∆τ
[b]
ij =

1

Dnn
(17)



Figure 1: The feasible region for Problem 4.

for the edges in that path, namely e21, e32, e43, e54 and e15. the pheromones
are updated as

τij ← τij(1− ρ) + ∆τ
[b]
ij =

1

ρDnn
(1− ρ) +

1

Dnn
=

1

ρDnn
. (18)

That is, the pheromone levels remain unchanged on these edges. For all other
edges, the pheromones change as

τij ← τij(1− ρ) =
1

ρDnn
(1− ρ) ≈ 0.0939. (19)

However, since MMAS introduces a lower pheromone limit, in this case 0.1,
the pheromone levels on those edges will be equal to 0.1 rather than 0.0939.

4. (a) The penalty term takes the form

p(x; µ) = µ

(
m∑

i=1

(max{gi(x), 0})2 +
k∑

i=1

(hi(x))2

)
, (20)

where gi(x) and hi(x) are the (m) inequality and (k) equality constraints,
respectively and µ is a positive parameter that determines the magnitude of
the penalty.

(b) Using the four constraints, one can plot the feasible region, see the figure above.
It is easy to see that the unconstrained minimum occurs at (x1, x2) = (6, 7).
Starting at this point, one can see that, in fact, only the third constraint is
violated here. Thus, at this point, one can write objective function as

fp(x; µ) = (x1 − 6)2 + (x2 − 7)2 + µ(x1 + x2 − 7)2. (21)



Setting the gradient to zero, one obtains

∂fp

∂x1
= 2x1 − 12 + 2µ(x1 + x2 − 7) = 0 (22)

and
∂fp

∂x2
= 2x2 − 14 + 2µ(x1 + x2 − 7) = 0. (23)

From these equations, one finds a single solution, namely

x1(µ) =
6(1 + µ)

1 + 2µ
, (24)

x2(µ) = 7− 6µ

1 + 2µ
. (25)

With µ→∞ one obtains (x1, x2) = (3, 4). Moreover, for any finite value of µ,
the point (x1(µ), x2(µ)) violates the third constraint (and only that constraint),
as can be seen by studying the constraints and the feasible region in the figure.
One can also see that fp(x; µ) is strictly convex for any µ > 0, so the point
(3,4) is the global minimum of f subject to the constraints.


