
Chalmers University of Technology, Department of Applied Mechanics
Teacher: Mattias Wahde, Tel. 772 3727

Exam in FFR 105 (Stochastic optimization algorithms), 2008-10-22,
14.00-18.00, V.
It is allowed to use a calculator, as long as it cannot store any text. Furthermore, math-
ematical tables (such as Beta, Standard Math etc.) are allowed, provided that no notes
have been added. However, it is not allowed to use the course book during the exam.
Note! In all problems involving analytical calculations, derivations, proofs etc., show
clearly how you arrived at your answer, i.e. include intermediate steps etc.

There are 4 problems in the exam, and the maximum number of points is 25.

1. (a) Many operators and concepts (and different versions thereof) have been defined
in connection with evolutionary algorithms (EAs). Describe, in detail, the
following concepts:

i. Elitism (1p)

ii. Fitness ranking (1p)

iii. Creep mutations (real-number creep) (1p)

You should not write Matlab code, but make sure to describe the three concepts
in such a way that it would be possible to write Matlab code, based on your
description.

(b) Roulette-wheel and tournament selection are commonly used methods for se-
lection in EAs. Consider a case where a single individual is to be selected from
a population in which the fitness values are F1 = 1, F2 = 4, F3 = 9, F4 = 16,
F5 = 25, using either (i) roulette-wheel selection or (ii) tournament selec-
tion with a tournament size of two, and with tournament selection probability
ptour = 0.75. What is the probability of selecting individual 4 (with fitness
= 16) using

i. Roulette-wheel selection (1p)

ii. Tournament selection (1p)

(c) Convexity (of the objective function) is a desirable property in optimization
problems. Formally, if S ∈ Rn is a convex set and f(x) is a convex function
defined on S, then any local minimum is also a global minimum. Prove this
result, using the properties of convex functions. Note: Make sure to use clear
statements and formulations, such that the proof can be followed, in detail,
from the first step to the last. (2p)

(d) Is the function
f(x1, x2) = 4x2

1
+ 2x2

2
− 3x1x2 (1)

convex or not? Motivate your answer clearly! (1p)

(e) In stochastic optimization algorithms, such as EAs, ant colony optimization
(ACO) and particle swarm optimization (PSO), there is always a tradeoff be-
tween exploration and exploitation of the results already found. Describe, in
detail, how this tradeoff is managed in the case of PSO. In your description,
include any equations that may be useful. (2p)



2. Determine (analytically, using one or several of the classical optimization methods
covered in the course) the minimum value taken by the function

f(x1, x2) = 2x2

1
− 4x1 + x2

2
+ 2x2, (2)

over the set
S = {(x1, x2) : 2x2

1
+ x2

2
≤ 12}. (3)

Make sure to describe all steps in the calculation clearly. (4p)

3. Ant colony optimization (ACO), which is inspired by the behavior of ants, is typ-
ically used for solving routing problems, such as the traveling salesman problem
(TSP). Several ACO algorithms have been defined.

(a) Describe the algorithm Ant system (AS) in detail. Make sure to provide a clear
list of the various steps in the algorithms, as well as a brief explanation of each
step. You should not write Matlab code, but your presentation of the algorithm
should be sufficiently clear to make an implementation possible, based on your
description. You may use the TSP as a specific example in the description.
(3p)

(b) Max-min ant system (MMAS) is another version of ACO, derived from AS.
List and describe clearly the differences between MMAS and AS. (2p)

(c) In MMAS explicit lower and upper bounds are introduced on the pheromone
levels. However, the explicit upper bound is, in fact, unnecessary. Prove rigor-
ously (for MMAS) that the maximum pheromone level on any edge eij cannot
exceed f ∗/ρ, where f ∗ is the value of the objective function for the optimal
solution (i.e. 1/D∗ in the case of TSP, where D∗ is the length of the shortest
possible path) and ρ ∈]0, 1] is the evaporation rate. (2p)

4. In analytical studies of EAs, it is common to use the Onemax problem, for which
the value of the fitness function for a given (binary) chromosome equals the number
of 1s in the chromosome. For this simple problem, one can derive an expression for
the expected runtime (number of evaluations) for an EA with a single individual,
which is modified using mutations only. In this EA, a mutated individual is kept
if and only if it is better (i.e. its chromosome contains more 1s) than the previous
individual.

(a) Consider a chromosome of length m with l 0s (and, therefore m− l 1s). Let the
mutation rate be pmut. Derive an approximate expression for the probability of
improving this chromosome (i.e. increasing the number of 1s). The expression
should summarize a case in which none of the 1s mutate, and at least one of
the 0s does. (1p)

(b) Using the probability estimate derived in (a), derive an expression for the
expected number of evaluations needed to reach a chromosome consisting only
of 1s, starting from a chromosome with m

2
0s. Let the mutation rate be equal

to k/m, for some value of k � m. (3p)



Stochastic optimization methods (FFR 105), 2008
Solutions to the exam (2008-10-22)

1. (a) i. Elitism is the process of transferring an unchanged copy of the best indi-
vidual in the current generation, to the next generation. This is done, for
example, by keeping track (during evaluation) of the index (in the popula-
tion) of the best individual. Then, when making the new generation, one
may start by inserting a copy of the best individual (it can also be inserted
at the end of the procedure that generates the new individual). See also
p. 55 in the course book.

ii. In fitness ranking, one reassigns fitness values starting from the raw fitness
values obtained during evaluation of individuals. The standard way to
carry out ranking is to set new (ranked) fitness values as

F rank
i = (N + 1−R(i)), (1)

where F rank
i is the new fitness value of individual i, N is the population

size, and R(i) is the ranking of individual i. The ranking is defined such
that the best individual gets ranking R(i) = 1, the second best ranking
R(i) = 2 etc. See also p. 51 in the course book.

iii. Creep mutations are used in connection with real-number encoding. These
mutations generally change the value (allele) of a gene by a smaller amount
than the ordinary full-range mutations. In creep mutation, the new value
of a gene is obtained based on a distribution centered on the old value,
and with a range that is typically smaller than the (entire) allowed range
of the gene. Thus

g ← Ψ(g), (2)

where g denotes the value of g, and Ψ the distribution. A common special
case is to use a uniform distribution, in which case the mapping takes the
form

g ← g − Cr/2 + Crr, (3)

where Cr is the creep rate and r is a uniform random number in [0, 1]. In
case the new value ends up outside the allowed range, it is modified to the
nearest limit.

(b) i. Using roulette-wheel selection, the probability of selecting individual 4 can
be written as

p4 =
F4

F1 + F2 + F3 + F4 + F5

=
16

55
≈ 0.291. (4)

ii. In the case of tournament selection with tournament size 2, there are
5 × 5 = 25 possible tournaments, since the individuals are chosen (for
the tournament) with replacement. Thus the possible pairs of individuals
are (1, 1), (1, 2), . . . (5, 5). Of these 25 pairs (which occur with equal proba-
bility, namely 1/25), 9 involve individual 4: (1,4), (2,4), (3,4), (4,4), (4,5),
(4,1), (4,2), (4,3), (5,4). For six of the pairs individual 4 is the better indi-
vidual (and is thus selected with probability ptour) whereas for two of the



pairs ((4,5) and (5,4)) the other individual is better, so that individual 4 is
selected only with probability 1− ptour. For the pair (4,4), individual 4 is
obviously selected with probability 1. Thus, summarizing, the probability
of selecting individual 4 equals

1

25
(6ptour + 2(1− ptour) + 1) = 0.24. (5)

(c) The proof can be found on p. 173 of the course book.

(d) Convexity of functions can be studied using the Hessian matrix. More specifi-
cally, a function f(x1, x2) is convex if the Hessian

H =




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

 (6)

is positive definite, i.e. has positive eigenvalues. In this particular case, the
Hessian becomes

H =

(

8 -3
-3 4

)

. (7)

The eigenvalues are obtained from the equation

(8− λ)(4− λ)− 3× 3 = 0. (8)

Solving this equation, one obtains

λ1,2 = 6±
√

13 > 0. (9)

Thus, the function is convex.

(e) In PSO, the tradeoff between exploration and exploitation is handled using the
inertia weight w. The velocities change according to

vij ← wvij + c1q





xpb
ij − xij

∆t



+ c2r

(

xsb
j − xij

∆t

)

, j = 1, . . . , n, (10)

where xij denotes position component j of particle i, vij denotes velocity com-

ponent j of particle i, c1 and c2 are constants, xpb
ij are the components of the

best position found by particle i and xsb
j are the components of the best po-

sition found by any particle in the swarm. If w > 1, the search puts more
emphasis on exploration, since the cognitive and social components (the terms
involving c1 and c2) then play a less significant role than if w < 1, in which
case the PSO algorithm tries to exploit the results already found, as encoded
in the cognitive and social components. Initially, w is typically set to a value
larger than 1 (1.4, say), and is then lowered down to a limit of around 0.3-
0.4. A common procedure for reducing w is through multiplication by a factor
β ∈]0, 1] (often very close to 1).

2. Local minima are found at stationary points, i.e. at points where the gradient of f
is equal to the zero vector. For this particular function, the requirement that the
gradient should vanish yields the two equations

∂f

∂x1

= 4x1 − 4 = 0 (11)



∂f

∂x2

= 2x2 + 2 = 0 (12)

with the solution P1 = (1,−1)T. The boundary 2x2
1+x2

2 = 12 remains to be checked.
This can be done using, for example, the method of Lagrange multipliers. However,
even easier is to note that S is a convex set, and that f(x1, x2) is a convex function
(the eigenvalues of the Hessian are 4 and 2, i.e. both are positive), so that any local
minimum must also be a global minimum. Thus, the minimum value of f over S is
equal to f(1,-1) = -3.

3. (a) A detailed description of AS can be found on pp. 105-107 in the course book.
For full points, the description should contain all the steps (1-4), as well as clear
explanations of (1) pheromone initialization, (2) probabilistic path generation,
(3) and the rules for updating pheromones.

(b) The main differences between MMAS and AS are that

• In MMAS, only the ant generating the best solution is allowed to deposit
pheromone. The definition of the best solution is typically changes during
a run, so that one uses best so far for some iterations, then best in current

iteration for some iterations etc.

• In MMAS, one introduces limits on the pheromone levels. Thus, if the
pheromone level τij on a given edge eij falls below τmin, it is set to τmin.
Similarly, if the pheromone level τij exceeds τmax, it is set to τmax.

• In MMAS, pheromones are initialized to the maximum level, i.e. such that

τij = τmax ∀(i, j) ∈ {1, n}. (13)

τmax is set as 1/(ρDb), where ρ is the evaporation rate and Db is the length
of the current best tour.

(c) The proof is given on p. 183 in the course book.

4. (a) The probability of not mutating any of the 1s equals (1 − pmut)
m−l (since

mutations are independent of each other), and the probability of mutating
at least one of the 0s equals 1 − (1 − pmut)

l. Thus, the probability for the
combination of these two events (which can be taken as an approximation of
the probability of an improvement as stated in the problem formulation) equals

P (l, pmut) = (1− pmut)
m−l(1− (1− pmut)

l). (14)

(b) The proof can be found on pp. 181-182 in the course book.

Mattias Wahde, 2008-10-22


