Tentamen
ess116 Elektriska Nät och System, F2

Examinator: Ants R. Silberberg

18 augusti 2017 kl. 14.00-18.00 sal: M

Förfrågningar: Ants Silberberg, tel. 1808
Lösningar: Anslås på institutionens anslagstavla, plan 5.
Resultat: Rapporteras in i Ladok
Granskning: Onsdag 30 augusti kl. 12.00 - 13.00 , rum 3311.
Plan 3 i ED-huset (Lummerummet),
i korridor parallell med Hörsalsvägen.
Bedömning: En korrekt och välmotiverad lösning med ett tydligt an-
givet svar ger full poäng.

Hjälpmedel

- Typgodkänd miniräknare
- Beta Mathematics Handbook
- Physics Handbook
- Sammanfattning Kretselektronik (A4-häfte med 7 sidor)

Betygsgränser (6 uppgifter om vardera 3 poäng).

<table>
<thead>
<tr>
<th>Poäng</th>
<th>0-7.5</th>
<th>8-11.5</th>
<th>12-14.5</th>
<th>15-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betyg</td>
<td>U</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Lycka till!

\[R_1 = 1.0 \, \text{kΩ} \quad R_2 = 2.0 \, \text{kΩ} \quad R_3 = 4.0 \, \text{kΩ} \]
\[E = 18.0 \, \text{V} \]

Figur 1: Tvåpol

2. Utgå igrän kretsen i figur 2. Vilket värde får strömmen i_L då späningsskillnaden $u_2 - u_1 = 2.0 \, \text{V}$? Antag ideala operationsförstärkare.

\[R_1 = 20 \, \text{kΩ} \quad R_L = 10 \, \text{kΩ} \quad R_2 = 40 \, \text{kΩ} \]

Figur 2: Operationsförstärkarkrets
3. En passiv RC-krets enligt figur 3 realiserar ett bandpassfilter med $u_a(t)$ som insignal och $u_o(t)$ som utsignal. Beräkna filtrets centerfrekvens och bandbredd.

\[R = 10 \text{ k} \Omega \quad C = 0.20 \mu \text{F} \]

![Diagram för bandpassfilter](image1)

Figur 3: Bandpassfilter

4. Beräkna spänningen $u(t)$ i kretsen som visas i figur 4. Kretsen saknar begynnelseenergi. (Enhetssteget tecknas med $\theta(t)$.)

\[u_a(t) = \frac{15}{2} e^{-2t} \theta(t) \text{ V} \]

\[R = 1.0 \; \Omega \]

\[L = 2.0 \; \text{H} \]

![Diagram för RL-krets](image2)

Figur 4: RL-krets
5. Beräkna spänningsförstärkningen $\frac{u_o}{u_i}$ hos förstärkaren i figur 5.
Beräkna även förstärkarens inresistans R_m, som den är angiven i figuren.
Reaktansen från kapacitansen, $X_C = \frac{1}{\omega C}$, kan försummas vid aktuella signalfrekvenser.

\[
R_S = 10 \, k\Omega \quad R_D = 2.0 \, k\Omega \quad R_G = 100 \, k\Omega \\
E = 15.0 \, V \quad E_G = -1.0 \, V
\]

För transistorn gäller

\[
I_DSS = 5.0 \, mA \quad U_P = -3.0 \, V
\]

![Diagram of JFET amplifier](image)

Figur 5: JFET förstärkare

(a) Beräkna förstärkarkretsens överföringsfunktion

\[H(s) = \frac{U_o(s)}{U_i(s)} \]

utan att sätta in några numeriska värden.

(b) Beräkna värdet på \(C_2 \) så att förstärkarens stegsvärde blir så snabbt som möjligt utan att stegsvaret får översvärm.

(c) Vilken stigtid får förstärkaren?

\[R_1 = R_2 = R_3 = 5.0 \, \text{kΩ} \]
\[C_1 = 0.15 \, \text{μF} \]

Antag ideal operationsförstärkare.

\[u_s \rightarrow \right}
1. **Tensionspåtning:** \(U_{ab} \)

KVL: \[5I_3R_1 + I_3 \left(R_1 + R_2 \right) - E + U_{ab} = 0 \]

\[U_{ab} = I_3 R_3 \]

\[U_{ab} + I_3 \left(R_1 + R_2 + 5R_1 \right) = E \]

\[U_{ab} \left(1 + \frac{R_1 + R_2 + 5R_1}{R_3} \right) = E \]

\[U_{ab} = \frac{E}{1 + \frac{1}{R_3} \left(R_2 + 6R_1 \right)} = \frac{18}{1 + \frac{4}{7} \left(2 + 6 \right)} = 6 \text{ V} \]

2. **Kretsström:** \(I_{ab} \quad \left(U_{ab} = 0 \right) \)

\[I_{ab} \left(R_1 + R_2 \right) - E = 0 \quad \text{(KVL)} \]

\[I_{ab} = \frac{E}{R_1 + R_2} = \frac{18}{1 + 2} \times 10^{-3} = ... = 6 \text{ mA} \]

3. **Ekvivalent Resistance:** \(P_0 = \frac{U_{ab}^2}{I_{ab}} = \frac{6}{6 \times 10^{-3}} = 1.0 \text{ k} \Omega \)
\[U_2 = 0 \]

\[U_L = R_L \cdot I_L \]

\[U_2 - U_1 = P_L \cdot I_L \cdot \frac{P_1}{P_2} \]

\[I_L = \frac{U_2 - U_1}{P_2} = \frac{P_2}{P_L \cdot P_1} = \frac{Z_0 \cdot 400 \cdot 10^{-3}}{10 \cdot 20} \]

\[I_L = 0.4 \, mA \]
\[R = 10 \text{k}\Omega \]
\[C = 0.20 \mu F \]

\[Z = \frac{1}{sC} \left(\frac{R}{sC+R} \right) = \frac{R}{sC+R} + \frac{1}{sC} \]

\[Z + sRC \]

\[U_0 = U_1 \cdot \frac{R}{R + \frac{1}{sC}} = U_1 \cdot \frac{sRC}{1+sRC} \quad \text{Spa defining} \]

\[U_1 = U_0 \cdot \frac{Z}{R+sC} = U_0 \cdot \frac{1}{1 + \frac{R}{sC}} = U_0 \cdot \frac{1}{1 + \frac{R}{sC} \left(\frac{Z+sRC}{R+\frac{1}{sC}} \right)} \]

\[\frac{U_0 (1+sRC)}{sRC} = U_0 \cdot \frac{R + \frac{1}{sC}}{R + \frac{1}{sC} + R (Z+sRC)} \]

\[\frac{U_0}{U_5} = \frac{(1+sRC) \cdot R}{(1+sRC) \left(\frac{R}{sC+R} + sRC + s^2R^2C \right)} \]

\[= \frac{sRC}{1 + sRC + sRC + sRC + s^2R^2C} = \frac{SRC}{S^2 + s \frac{3}{RC} + \frac{1}{(RC)^2}} = \frac{SA}{S^2 + BS + W_0^2} \]

Bandbreed: \[B = \frac{2}{RC} = 1500 \text{ r/s} \]

Centerfrequ. \[W_0 = \frac{1}{RC} = 500 \text{ r/s} \]
\[Z = \frac{S L \cdot 2R}{S L + 2R} \]

\[U = U_s \cdot \frac{Z}{Z + R} = U_s \cdot \frac{1}{s \left(1 + \frac{R}{Z} \right)} = U_s \cdot \frac{1}{1 + \frac{R}{s} \left(\frac{1}{S L + 2R} \right)} = \]

\[= U_s \cdot \frac{2 S R L}{S^2 2 R L + S^2 R L + 2 R^2} = U_s \cdot \frac{2 S}{3 S^2 + 2 R^2 L} \]

\[= U_s \cdot \frac{\frac{2}{3}}{S + \frac{2 R}{3 L}} = \frac{2}{3}, \quad \frac{15}{2}, \quad \frac{S}{(S + \frac{1}{2})(S + 2)} \]

P, B, U: \[5 \cdot \frac{S}{(S + \frac{1}{2})(S + 2)} = \frac{A}{S + \frac{1}{3}} = \frac{8}{S + 2} \]

\[\Rightarrow A = 5 \cdot \frac{-\frac{1}{2}}{-\frac{1}{3} + 2} = -\frac{5}{3} \cdot \frac{3}{5} = -1 \]

\[B = 5 \cdot \frac{-2}{-2 + \frac{1}{3}} = 5 \cdot \frac{-2}{-\frac{5}{3}} = 6 \]

\[U(s) = \frac{6}{S + 2} - \frac{1}{S + \frac{1}{3}} \]

Solve: \[u(t) = 6 e^{2t} - e^{\frac{1}{3} t} \quad V, \quad t > 0 \]
Stor signal

\[I_g = 0 \]
\[U_{gs} = E_g = -1 \text{ V} \]

Små signal

\[
\begin{align*}
U_g &= \frac{R_g}{R_s + R_g} \Rightarrow \quad U_s = U_{gs} - \frac{R_s + R_g}{R_g} \\
U_o &= -g_m U_{gs} R_D
\end{align*}
\]

\[
\frac{U_o}{U_s} = -\frac{R_g}{R_s + R_g} = -g_m R_D
\]

\[
g_m = \frac{\partial i_D}{\partial u_{gs}} = \frac{\partial}{\partial u_{gs}} \left(I_{DSs} \left(1 - \frac{u_{gs}}{u_p} \right) \right) = \frac{2 E_{DSs}}{u_p} \left(1 - \frac{u_{gs}}{u_p} \right) = -\frac{2 \times 5 \times 10^{-3}}{3} \left(1 - \frac{1}{3} \right) = \frac{-10^3}{3} = -\frac{2 \times 10^{-3}}{9} \]

\[
\frac{U_o}{U_s} = -\frac{100}{1000} \cdot \frac{2 \times 10^{-3} \cdot 2}{9} = -\frac{4}{9} \\
P_{in} = R_g
\]
KCL_A: \[\frac{U_5 - U'}{R_1} - U \cdot \frac{1}{R_2} - \frac{U'}{R_2} = 0 \]

KCL_B: \[\frac{U'}{R_2} + U_5 \cdot \frac{1}{C_2} = 0 \quad \Rightarrow \quad U' = -U_5 \cdot \frac{R_2}{C_2} \]

\[\frac{U_5}{R_1} = U \left(\frac{1}{R_1} + \frac{1}{C_1} + \frac{1}{R_2} + \frac{1}{R_3} \right) - \frac{U_0}{R_3} \]

\[\frac{U_5}{R_1} = -U_0 \left(\frac{R_2}{R_1} + \frac{R_3}{R_1} \right) + \frac{R_2}{R_3} \]

\[\frac{U_5}{R_1} = -U_0 \left(\frac{R_2}{R_1} + \frac{R_3}{R_1} \right) + \frac{R_2}{R_3} \]

\[\frac{U_0}{R_1} = \frac{R_2}{R_1} \frac{1}{R_2 + \frac{1}{C_2}} \]

\[U_5 = \frac{1}{s^2 + \frac{1}{R_2 \cdot \frac{1}{C_2} + \frac{1}{R_3 \cdot \frac{1}{C_2}}}} + \frac{1}{R_2 \cdot \frac{1}{C_2} \cdot \frac{1}{C_2} + \frac{1}{R_3 \cdot \frac{1}{C_2} \cdot \frac{1}{C_2}}} \]

\[U_5 = \frac{1}{s^2 + \frac{1}{R_1 \cdot \frac{1}{C_1} + \frac{1}{R_2 \cdot \frac{1}{C_1}} + \frac{1}{R_3 \cdot \frac{1}{C_1}}} + \frac{1}{R_2 \cdot \frac{1}{C_2} \cdot \frac{1}{C_2}}} \]
by \[R_1 = R_2 = R_3 = R = 5.0 \ \text{k}\Omega, \quad C_1 = 0.15 \mu F \]

\[
\frac{U_0}{U_3} = -\frac{1}{\varepsilon_0 c_1 c_2} \left[S + \frac{3}{2} \frac{1}{\varepsilon_0 c_1} + \frac{1}{\varepsilon_0 c_1 c_2} \right]
\]

Polar: \[S_{12} = -\frac{3}{2} \frac{1}{\varepsilon_0 c_1} + \sqrt{\left(\frac{3}{2} \frac{1}{\varepsilon_0 c_1}\right)^2 - \frac{1}{\varepsilon_0 c_1 c_2}} \]

\[q = 0 \]

by double pol. lines

\[
C_2 = \frac{4}{a} \quad C_1 = \frac{4}{a} \quad 0.15 \mu F \approx 67 \text{ nF}
\]

\[
\frac{U_0}{U_3} = -\frac{1}{\varepsilon_0 c_1 c_2} = -\frac{k}{(S + \frac{3}{2} \frac{1}{\varepsilon_0 c_1})^2 (S + \omega_1)^2}
\]

\[
\omega_{tot} = \omega_1 \sqrt{2 \cdot \omega_2 - 1}
\]

\[
T_{tot} = \frac{2 \omega_2}{\omega_{tot}^2} = \frac{2 \omega_2}{\frac{3}{2} \frac{1}{\varepsilon_0 c_1} \sqrt{2 \cdot \omega_2 - 1}} \approx 1.7 \text{ ms}
\]

Alt.: \[T_{tot} = \frac{1}{1} \sqrt{2 \cdot \frac{t^2}{\omega_1}} = \frac{1}{1} \sqrt{2 \cdot \left(\frac{Z_2}{\omega_1}\right)^2} \approx 1.7 \text{ ms} \]