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Uppgift 1.

a. För ett dynamiskt system ges sambandet mellan insignalen u och ut-
signalen y av differentialekvationen

aẏ(t)− y(t) = au(t)

För vilka värden på a är differentialekvationen insignal-utsignal-stabil?
(1 p)

b. Bestäm med hjälp av blockschemat nedan överföringsfunktionen från
U(s) till Y (s).
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Betrakta blockschemat nedan, bestäm överföringsfunktionen från U(s) till
Y (s).

1. (a) Ett system beskrivs av differentialekvationen

ÿ(t) + 4ẏ(t) + y(t) = u(t), (1)

där u(t) är insignal och y(t) utsignal. Bestäm:

(i) Överföringsfunktionen fr̊an insignal till utsignal. (1p)

(ii) En godtycklig tillst̊andsmodell av (1). (2p)

(b) Systemet (1) ska regleras med en P-regulator, u(t) = KP (r(t) − y(t)), där r(t)
är en referenssignal. För vilka KP är det slutna systemet stabilt?

(2p)

(c) När systemet utsätts för en periodisk störning v(t) = sin t kan det modelleras
som

ÿ(t) + 4ẏ(t) + y(t) = u(t) + v(t).

Hur beror amplituden av utsignalen y(t) när transienten klingat av p̊a KP , d̊a
återkopplingen u(t) = −KPy(t) används?

(3p)

(d) Beräkna överföringsfunktionen fr̊an U(s) till Y (s) för systemet i Figur 1.

(2p)

+U(s) Y (s)
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F1(s)

F2(s)

Figur 1: Blockdiagram för Uppgift 1 (d).

2

(2p)

2

+

+

∑

(2 p)

c. Sambandet mellan insignalen u och utsignalen y för ett dynamiskt sys-
tem ges av differentialekvationen

ÿ(t) + 5ẏ(t) + 2y(t) = u̇(t− 3) + 2u(t− 3)

Bestäm överföringsfunktionen från insignal till utsignal samt systemets
statiska förstärkning. (2 p)

d. Figuren nedan visar stegsvaret för en PI-regulator med överföringsfunk-
tionen FPI(s) = K(1 + 1

Tis
). Bestäm integrationstidskonstanten Ti och

förstärkningen K. (2 p)



e. Nyquistdiagrammen för fyra av överföringsfunktionerna G1 −G6 visas
i figuren nedan. Para ihop rätt överföringsfunktion med rätt Nyquist-
kurva och motivera dina svar. (2 p)
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Nyquistdiagrammen för fyra av överföringsfunktionerna G1 − G6 visas i �-
guren nedan. Para ihop rätt överföringsfunktion med rätt Nyquistkurva och
motivera dina svar.
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3. Nyquistdiagrammen för fyra av överföringsfunktionerna G1–G6 visas i Fi-
gur 4. Para ihop rätt överföringsfunktion med rätt Nyquistkurva och moti-
vera dina svar.
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Figur 4 Nyquistkurvor till fyra av överföringsfunktionerna G1–G6 i Uppgift 3.

(2 p)

Solution

Nyquistkurva 1: Andra ordningens stabilt system utan
dödtid och utan integrator =[ G5

Nyquistkurva 2: Process med dödtid =[ G2

Nyquistkurva 3: Tredje ordningens system utan integrator =[ G6

Nyquistkurva 4: Process med integrator =[ G1

4

(2p)

4

Lösning:

a. Laplace-transformering ger överföringsfunktionen G(s) = a
as−1

, vilket
betyder att systemet har en pol i s = 1/a, dvs villkoret för in-ut-stabilitet
är a < 0.

b. Blockschemat kan ses som en seriekoppling av F1 + G1 med ett åter-
kopplat system med G2 i “framledningen” och F2 i återkopplingen. Alltså
(observera att det är positiv återkoppling):

Y (s)

U(s)
=

(F1 +G1)G2

1− F2G2

2



c. Laplace-transformering ger överföringsfunktionen

G(s) =
s+ 2

s2 + 5s+ 2
e−3s

med den statiska förstärkningen G(0) = 1.

d. Genom att skriva om det Laplace-transformerade stegsvaret som

YFPI
(s) = K(1 +

1

Tis
) · 1

s
= K

1

s
+

K

Ti

· 1

s2

ses att stegsvaret utgörs av summan av ett steg och en ramp med för-
stärkningarna K respektive K/Ti. Avläsning i figuren ger K = 0, 75
och K/Ti = (2, 0− 0, 75)/40, som ger Ti = 24.

e. Kurva 1, 2 och 3 har samma begynnelsevärde G(0), som stämmer med
G1, G2, G3 och G6. Dödtiden avgör att kurva 2 kommer från G6 (spi-
ralformen). Kurva 1 och 3 skiljer i fasen för höga frekvenser och kan
förklaras av skillnaden mellan antal poler och antal nollställen – detta
ger paren kurva 1–G1 (fasen −180◦ för höga ω) och kurva 3–G2 (fasen
−270◦ för höga ω). Återstår kurva 4, vars lågfrekvensförstärkning går
mot ∞, detta pga den rena integratorn i G5.
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Uppgift 2.
En process beskrivs av överföringsfunktionen

G(s) =
s+ 1

s2 + 1

a. Bestäm ett uttryck för stegsvaret för G(s) i stationäritet. (2 p)

b. En PI-regulator F (s) = K(1 + 1
Tis

) kopplas in på vanligt sätt för att
styra processen. För vilka värden på K > 0 och Ti > 0 fås ett stabilt
återkopplat system? (3 p)

Lösning:

a. Stegsvaret ges av

Y (s) = G(s) · 1
s
=

s+ 1

s2 + 1
· 1
s
=

−s+ 1

s2 + 1
+

1

s
,

vilket efter inverstransformering ger

y(t) = − cos t+ sin t+ 1,

vilket sammanfaller med uttrycket i stationäritet.

b. Återkopplingen ger

1 + L(s) = 1 +
K(1 + Tis)

Tis
· s+ 1

s2 + 1
,

dvs den karakteristiska ekvationen är

s3 +Ks2 + (1 +K +K/Ti)s+K/Ti = 0

Routh-Hurwitz’ tablå blir

1 (1 +K +K/Ti)
K K/Ti

c0 0
d0

med c0 = (1 +K +K/Ti)− 1/Ti = 1 +K + 1
Ti
(K − 1) och d0 = K/Ti.

Eftersom K > 0 och Ti > 0, så fås d0 > 0. Återstår villkoret c0 > 0,
vilket ger stabilitetsvillkoret Ti > 1−K

1+K
(vilket ju för K > 1 alltid är

uppfyllt för positiva Ti).
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Uppgift 3.
Följande olinjära modell beskriver dynamiken för en eldriven båt (x1 är bå-
tens hastighet, x2 är propellerns rotationshastighet och u är spänningen till
motorn):

ẋ1 = −x1 + (x1 + x2)(x2 − x1)

ẋ2 = −x2 + u

a. Linjärisera systemet kring spänningen u = u0 = 1. Antag att positiv
spänning ger upphov till positiv hastighet för båten. (2 p)

b. Anta att båtens hastighet är mätbar, men inte propellerns rotationshas-
tighet. Bestäm utifrån den linjäriserade modellen från (a) en observatör
med poler i -2 och -1. (3 p)

Lösning:

a. Den olinjära tillståndsmodellen är

ẋ1 = −x1 + (x1 + x2)(x2 − x1) = f1(x1, x2)

ẋ2 = −x2 + u = f2(x1, x2, u)

Den stationära punkten svarande mot insignalen u = u0 = 1 ges av
x20 = u0 = 1 respektive 1 − x2

10 − x10 = 0. Den senare ekvationen ger
den positiva lösningen x10 = (

√
5−1)/2. Linjäriseringen fås genom att

beräkna partiella derivator i den stationära punkten:

A =
∂f

∂x (x0,u0)
=

[
−2x1 − 1 2x2

0 −1

]
(x0,u0)

=

[
−
√
5 2

0 −1

]
B =

∂f

∂u (x0,u0)
=

[
0
1

]
b. En observatör kan användas för att skatta tillstånden:

˙̂x(t) = Ax̂(t)+Bu(t)+K
(
y(t)−Cx̂(t)

)
= (A−KC)x̂(t)+Bu(t)+Ky(t),

där dynamiken för skattningsfelet bestäms av matrisen A−KC:

A−KC =

[
−
√
5 2

0 −1

]
−
[
k1
k2

] [
1 0

]
.

Koefficienterna k1 och k2 bestäms så att önskade poler fås:

det(sI−(A−KC)) =

∣∣∣∣s+ k1 +
√
5 −2

k2 s+ 1

∣∣∣∣ = (s+1)(s+k1+
√
5)+2k2 = (s+1)(s+2),

vilket ger k1 = 2−
√
5 och k2 = 0.
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Uppgift 4.
Följande överföringsfunktioner beskriver två varianter av en PD-regulator:

F1(s) = Kp(1 + Tds) F2(s) = Kp

(
1 +

Tds

1 + Tfs

)
a. Skissa amplitud- och faskurvor i Bodediagram för de två varianterna.

OBS! Skisser räcker — det duger t ex med endast asymptoter för amp-
litudkurvan — men det är viktigt att ange ev. brytfrekvenser, liksom
värden för amplitud och fas då ω → 0 eller ω → ∞. (1 p)

b. Vilken är den främsta anledningen till att man föredrar variant 2 för
praktisk implementering? (1 p)

c. Anta att Tf i variant 2 “låses” i förhållande till Td genom att bestämma
relationen Tf = Td/N , där N är ett fixt heltal (detta är en inte ovanlig
lösning i kommersiella regulatorer).
Genomför en diskretisering med användning av dels “Euler bakåt” och
dels “Euler framåt”. Vilken är den diskretiserade regulatorns pol i de
båda fallen? Vad händer med polen då Td → 0? Slutsats? (2 p)

Lösning:

a. Variant 1: Amplituddelen har lutning 0 för små ω (förstärkning Kp)
och bryter uppåt vid ω = 1/Td. Fasdelen börjar vid 0◦ för små ω och
ökar till 90◦ för stora ω.
Variant 2: Amplituddelen börjar som ovan, bryter uppåt vid ω = 1/(Td+
Tf ) samt nedåt vid ω = 1/Tf . Asymptotiskt är förstärkningen Kp för
små ω och Kp(1 + Td/Tf ) för stora ω. Fasdelen börjar vid 0◦ för små
ω, når ett max mellan brytfrekvenserna och planar ut vid 0◦ för stora
ω.

b. Variant 1 ger godtyckligt hög förstärkning för höga frekvenser, vilket är
olämpligt, eftersom brus ger upphov till stora styrsignaler.

c. Variant 2 av PD-regulatorn med Tf = Td/N ges av

F2(s) = Kp

(
1 +

Tds

1 + Td

N
s

)
Diskretisering med “Euler bakåt” respektive “Euler framåt” ger

F2b(z) = Kp

(
1+

Td

h
(1− z−1)

1 + Td

Nh
(1− z−1)

)
, F2f (z) = Kp

(
1+

Td

h
(z − 1)

1 + Td

Nh
(z − 1)

)
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Regulatorns pol ges i de två fallen av

zb =
Td

Nh+ Td

=
1

1 + Nh
Td

, zf =
Td −Nh

Td

= 1− Nh

Td

När Nh är litet jämfört med Td så är polerna ungefär desamma, men
om Td → 0 för fixt h, så får man ett något oväntat resultat: zb →
0 medan zf → −∞. Detta betyder att med Euler bakåt fås en stabil
regulator, men med Euler framåt blir regulatorn instabil. Den senare
metoden är alltså inte lämplig att använda i denna situation!

Uppgift 5.
Temperaturen i en bil påverkas genom att med återkoppling från en tempe-
ratursensor reglera spänningen till ett värmelement. Överföringsfunktionen
från spänning till temperatur ges av

G(s) =
2

1 + 0.25s
e−0.2s

a. Bestäm låg- och högfrekvensasymptoterna (endast beloppskurvan) för
processen. (2 p)

b. Anta att en P-regulator används för att styra värmeelementet. Bestäm
den högsta skärfrekvens ωc, som ger en fasmarginal på minst 55◦. Vilket
kvarstående fel fås vid stegformade börvärdesändringar? (2 p)

c. Vi önskar nu eliminera det kvarstående felet vid stegformade börvär-
desändringar. Välj lämplig regulatorstruktur och bestäm regulatorpa-
rametrar som ger en skärfrekvens ωc = 3 rad/s och en fasmarginal på
minst 55◦. (3 p)

Lösning:

a. LF-asymptot: |G(iω)| ≈ 2. HF-asymptot: |G(iω)| ≈ 8
ω
.

b. En fasmarginal φm = 55◦ fås om processen har fasen −125◦ vid skär-
frekvensen ωc:

argG(iωc) = (− arctan 0.25ωc − 0.2ωc) ·
180◦

π
≈ −125◦ ⇒ ωc ≈ 6 rad/s

Bestäm P-regulatorns förstärkning Kp så att denna skärfrekvens er-
hålls:

Kp =
1

|G(iωc)|
≈ 0.9.
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Denna förstärkning ger det kvarstående felet

1

1 + L(0)
=

1

1 +KpG(0)
≈ 1

1 + 1.8
≈ 0.36.

c. Välj PI-regulator för att eliminera kvarstående fel: F (s) = K(1 + 1
Tis

).
Processens fasförskjutning vid ωc = 3 rad/s är

argG(iωc) = (− arctan 0.25 · 3− 0.2 · 3) · 180
◦

π
≈ −71◦

Regulatorn skall då ha fasvridningen −54◦ (−125◦ + 71◦), dvs:

argF (iωc) = (−π + arctanTi · 3) ·
180◦

π
= −54◦ ⇒ Ti ≈ 0.24

Bestäm slutligen K så att kretsförstärkningen är 1 vid skärfrekvensen:

K =
Tiωc√

1 + (Tiωc)2)
· 1

|G(iωc)|
≈ 0.37

SLUT!
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