Tentamen i Reglerteknik för TM2 (m fj), ERE091/SSY310, tisdagen 3 juni 2014.

Tid: Kl 08.30 - 12.30

Lokal: V-salar

Examinator: Claes Breitholtz

Lärare under tentamen: Claes Lindeborg (0705 655925)

Tentamensresultaten meddelas senast den 18 juni genom personligt e-mail. Granskning av rättning är möjlig den 19 och 20 juni, 12.15 -13.00, på plan 5 i E-huset (mot Hörsalsvägen). Var vänlig iakttag granskningstiderna!

betyg TRE : minst 8 poäng
betyg FYRA: minst 12 poäng
betyg FEM : minst 16 poäng

Tillåtna hjälpmedel:

1. Matematiska och fysikaliska tabeller (t ex BETA och Physics handbook).
3. Typgodkänd kalkylator.

LYCKA TILL!
1. Betrakta systemet i figuren, där variationen i inföd q₁ är en störstörhet, medan variationen i utflödet q₂ är en styrstörhet. Karets bottenearea är 1 m².

![Diagram](image)

a) Ställ upp en materialbalans som beskriver processen (dvs utan regulator) och ange den överföringsfunktion som relaterar variationer i utpumpat flöde Δq₂ till volymsvariationer ΔV.

1 poäng

b) Föreslå och motivera valet av en regulator åt processen ovan, sådan att stegstörningar inte ger upphov till kvarstående fel, och där 45⁰ fasmarginal uppnås vid skärfrekvensen \(\omega_c = 1 \) rad/minut.

2 poäng

c) Skissa ett Bodediagram (såväl fas- som beloppkurva) över resulterande kretsöverföring, där det tydligt framgår att fasmarginalen uppnås vid begärd skärfrekvens.

2 poäng

2. En viss typ av reglarsystem kan ha egenskaper att kretsöverföringens Nyquistkurva alltid ligger utanför en cirkel med radien ett och centrum i punkten \(-1 + i \cdot 0\). Ange lägsta möjliga värde på fasmarginalen i ett sådant fall. Vilket största värde på känslighetsfunktionens belopp kan då förväntas?

![Nyquistkurva](image)

3 poäng
3. Ett linjärt tidsinvariant system beskrivs av tillståndsområdet

\[
\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} x + \begin{bmatrix} -1 \\ 2 \end{bmatrix} u + \begin{bmatrix} 0 \\ 1 \end{bmatrix} w \text{ och } y = \begin{bmatrix} 1 & -1 \end{bmatrix} x
\]

där \(u \) är en känd insignal, medan \(w \) är en icke mätbar störning

a) Avgör om systemet är observerbart och bestäm observatörsmatrisen, \(K \), så att resulterande observatörens båda egenvärden blir \(-1\).

3 poäng

2 poäng

Ledning Om \(f(t) \) är en kontinuerlig funktion och \(\delta(t) \) är Dirac’s "impulsfunktion" så gäller:

\[
\int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) d\tau = f(t)
\]

4. Betrakta överföringsfunktionen (som kan uppkomma i samband med fysikaliska system som beskrivs av linjära partiella differentialekvationer):

\[
G(s) = \frac{1}{\sqrt{s^2 + 4s + 5}}
\]

a) Bestäm viktfunktionen \(g(t) \). Använd \(L\{e^{bt} \cdot f(t)\} = F(s + b) \), samt utnyttja sambandet

\[
L^{-1}\left\{ \frac{1}{\sqrt{s^2 + a^2}} \right\} = J_0(at)
\]

1 poäng

b) Visa att det givna systemet med viktfunktionen \(g(t) \) är insignal-utsignalstabilt.

2 poäng

Ledning \(J_0(x) \), \(x \geq 0 \) är en sk Besselfunktion, en oscillatorisk, relativt svagt dämpad funktion, vars maximala värde är \(J_0(0) = 1 \) och vars minimala värde är \(J_0(3, 9) \approx -0.40 \).
5. Figuren nedan visar ett arbetsstyteck med massan \(m \) som förflytts på ett lutande plan.

Låt avståndet till rotationscentrum vara \(p \) och vinkeln mellan horisontalplanet och det lutande planet vara \(\varphi \). Arbetsstykets position styrs med hjälp av ett stålldon, som kan leverera ett variabelt moment \(T \), applicerat vid rotationscentrum. Följande momentbalans och kraftbalans beskriver systemets dynamik (g betecknar tyngdaccelerationen):

\[
m \cdot p^2(t) \cdot \frac{d^2 \varphi(t)}{dt^2} = T(t) - mg \cdot p(t) \cdot \cos[\varphi(t)]
\]

\[
m \cdot \frac{d^2 p(t)}{dt^2} = -mg \cdot \sin[\varphi(t)] + m \cdot \left(\frac{d}{dt} \varphi(t) \right)^2 \cdot p(t)
\]

a) Betrakta jämviktspunkten i systemet där \(p = p_0 \), \(\varphi = \varphi_0 \), \(T = T_0 \). Om positionen \(p_0 \) anses given (men i princip godtycklig), bestäm vilka värden på \(\varphi_0 \) och \(T_0 \) som då motsvarar jämvikt, dvs då alla tidsderivator är noll?

1 poäng

b) Antag små avvikelser från jämviktsställandet definierat av \(p = p_0 \), \(\varphi = \varphi_0 \), \(T = T_0 \) och inför tillståndsstörheterna \(x_1 = \Delta p \), \(x_2 = \Delta \dot{p} \), \(x_3 = \Delta \varphi \), \(x_4 = \Delta \dot{\varphi} \), styrstörheten \(u = \Delta T \) samt utstörheten \(y = \Delta p \). Ställ upp motsvarande linjära tillståndssystemet på standardformen \(\dot{x} = Ax + Bu \), \(y = Cx \) och avgör systemets stabilitet (in-signal-utsignalstabilt, marginellt stabilt eller instabilt).

3 poäng
Laplace-transformen

\[F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st}dt \]
\[f(t) = \mathcal{L}^{-1}\{F(s)\} = \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} F(s)e^{st}ds \]
\[\mathcal{L}\{c_1f_1(t) + c_2f_2(t)\} = c_1F_1(s) + c_2F_2(s) \]
\[\mathcal{L}\left\{ \frac{df(t)}{dt} \right\} = sF(s) - f(0) \]
\[\mathcal{L}\left\{ \int_0^t f(\tau)d\tau \right\} = \frac{1}{s}F(s) \]
\[\lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s) \]
\[\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s) \]
\[\mathcal{L}\{f(t-D)\} = e^{-sD}F(s) \]
\[\mathcal{L}^{-1}\{(G(s)F(s))\} = \int_0^s g(t-\tau)f(\tau)d\tau \]
\[\mathcal{L}\{e^{-at}\cdot f(t)\} = F(s+a) \]
\[\mathcal{L}\{f(t)\} = -\frac{d}{ds}F(s) \]
\[\mathcal{L}\{\sigma(t)\} = \frac{1}{s} \]
\[\mathcal{L}\{\delta(t)\} = 1 \]
\[\mathcal{L}\{\sin(bt)\} = \frac{b}{s^2 + b^2} \]
\[\mathcal{L}\{\cos(bt)\} = \frac{s}{s^2 + b^2} \]
\[\mathcal{L}\{e^{-at}\} = \frac{1}{s+a} \]

Z-transformen

\[F(z) = \mathcal{Z}\{f(k)\} = \sum_{k=0}^{\infty} f(k)z^{-k} \]
\[\mathcal{Z}\{f(k-1)\} = z^{-1}F(z) - f(-1) \]
\[z^n + a_1z^{n-1} + ... + a_{n-1}z + a_n = 0 \] har samma antal rötter inom \(|z| = 1|\) z-planet som,
\[\left(1 + \frac{w}{1 - w}\right)^n + a_1\left(1 + \frac{w}{1 - w}\right)^{n-1} + ... + a_{n-1}\left(1 + \frac{w}{1 - w}\right) + a_n \]
har inne i vänstra halvan av w-planet. (Möbiustransformen)
\[\mathcal{Z}\{\sigma(k)\} = \frac{z}{z-1} \]
\[\mathcal{Z}\{a^n\} = \frac{z}{z-a} \]
\[\mathcal{Z}\{\delta(k)\} = 1 \]
\[\lim_{k \to \infty} f(k) = \lim_{z \to \infty} F(z) \]
\[\lim_{k \to \infty} f(k) - \lim_{z \to 1} (z-1)F(z) \]

LTI-modeller

\[y(t) = \int_0^t g(t-\tau)u(\tau)d\tau \]
\[Y(s) = G(s)U(s) \]
\[y(k) = \sum_{i=0}^k h(k-i)u(i) \]
\[Y(z) = H(z)U(z) \]
\[\dot{z}(t) = Ax(t) + Bu(t) \quad G(s) = C(sI - A)^{-1}B + D \]

\[y(t) = Cx(t) + Du(t) \quad g(t) = C\Phi(t)B + DM(t) \]

\[\Phi(t) = e^{At} = I + At + A^2t^2/2! + A^3t^3/3! + \ldots = L^{-1}((sI - A)^{-1}) \]

\[\frac{d\Phi(t)}{dt} = A\Phi(t), \quad \Phi(0) = I, \quad \Phi^{-1}(t) = \Phi(-t), \quad \Phi(t)\Phi(r) = \Phi(t+r) \]

\[z(t) = \Phi(t-t_0)x(t_0) + \int_{t_0}^{t} \Phi(t-t)Bu(r)dr \]

\[G(s) = \frac{b_1s^{n-1} + \ldots + b_{n-1}s + b_n}{s^n + a_1s^{n-1} + \ldots + a_{n-1}s + a_n} + d \]

Styrbar kanonisk form:

\[\dot{z}(t) = \begin{bmatrix} -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \vdots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} z(t) \\ u(t) \end{bmatrix} \]

\[y(t) = [b_1 \ b_2 \ \cdots \ b_{n-1} \ b_n]z(t) + d \cdot u(t) \]

Observerbar kanonisk form:

\[\dot{z}(t) = \begin{bmatrix} -a_1 & 1 & 0 & \cdots & 0 \\ -a_2 & 0 & 1 & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ -a_{n-1} & 0 & \cdots & 0 & 1 \\ -a_n & 0 & \cdots & 0 & 0 \end{bmatrix} \begin{bmatrix} z(t) \\ u(t) \end{bmatrix} \]

\[y(t) = [1 \ 0 \ \cdots \ 0]z(t) + d \cdot u(t) \]

Styr- och observerbarhet beror av \(\text{rang}(S) \) respektive av \(\text{rang}(O) \):

\[S = [B \ AB \ A^2B \ \cdots \ A^{n-1}B], \quad O = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix} \]

Routh-Hurwitz stabilitetskriterium

\[
\begin{array}{c|ccccccccc}
 s^n & 1 & a_2 & a_3 & \cdots & c_1 & c_2 & c_3 & \cdots \\
 s^{n-1} & a_1 & a_2 & a_3 & \cdots & c_1 & c_2 & c_3 & \cdots \\
 s^{n-2} & c_1 & c_2 & c_3 & \cdots & c_1 & c_2 & c_3 & \cdots \\
 s^{n-2} & d_1 & d_2 & d_3 & \cdots & c_1 & c_2 & c_3 & \cdots \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\
 s^1 & \cdots & \cdots & \cdots & \cdots & c_1 & c_2 & c_3 & \cdots \\
 s^0 & \cdots \\
\end{array}
\]

Antal teckenbyten i vänstra kolumnen ger antalet positiva poler
Tidssvar

\[G(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{K}{1 + 2\zeta s/\omega_n + (s/\omega_n)^2} \]

\[s = -a \pm j\omega_d \quad \text{där} \quad \begin{cases} a = \frac{\zeta \omega_n}{\omega_d} \\ \omega_d = \omega_n \sqrt{1 - \zeta^2} \end{cases} \]

\[y(t) = K \left(1 - e^{-at} \frac{1}{\sqrt{1 - \zeta^2}} \sin(\omega dt + \varphi)\right) \quad \text{där} \quad \varphi = \arccos(\zeta) \]

\[\omega_d = \omega_n \sqrt{1 - \zeta^2} \]

\[\zeta = \cos \varphi \]

\[\frac{y(t)}{y(\infty)} \]

\[t_r \approx \frac{1}{\omega_n} (1 + 0.3\zeta + 2\zeta^2) \quad t_s \approx \frac{3}{\zeta \omega_n} \quad M = e^{-\pi \sqrt{1 - \zeta^2}} \]

\[t_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} \]
Bode-diagram

\[G(s) = \frac{1}{1 + \frac{s}{\omega_1}} \]

<table>
<thead>
<tr>
<th>\omega</th>
<th>\omega_1/4</th>
<th>\omega_1/2</th>
<th>\omega_1</th>
<th>2\omega_1</th>
<th>4\omega_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korrektion</td>
<td>\frac{1}{\sqrt{1.0625}}</td>
<td>\frac{1}{\sqrt{1.25}}</td>
<td>\frac{1}{\sqrt{2}}</td>
<td>\frac{1}{\sqrt{1.25}}</td>
<td>\frac{1}{\sqrt{1.0625}}</td>
</tr>
<tr>
<td>Korrektion_{dB}</td>
<td>-0.2 dB</td>
<td>-1.0 dB</td>
<td>-3 dB</td>
<td>-1.0 dB</td>
<td>-0.2 dB</td>
</tr>
</tbody>
</table>

\[G(s) = \frac{\omega_1^2}{s^2 + 2\zeta\omega_1 s + \omega_1^2} = \frac{1}{1 + 2\zeta s/\omega_1 + (s/\omega_1)^2} \]

Nyquist

\[
Z = \text{antal instabila poler för slutna systemet} \\
P = \text{antal instabila poler för öppna systemet} \\
N = \text{antal varv i bildplanet runt kritiska punkten}
\]

\[Z = P+N \]
Regulator design
Känslighetsfunktioner:

\[T = \frac{L}{1 + L'}, \quad S = \frac{1}{1 + L'}, \quad L = GF \]

\[G_0 = (1 + \Delta G)G, \quad \text{Robust stabilitet för } |\Delta G| < 1/T, \quad \forall \omega > 0 \]

Tillståndstöringskoppling:

\[u(t) = L_r r(t) - Lx(t) \]

r stegformad ger att y \(\rightarrow r \) då t \(\rightarrow \infty \) för

\[L_r = \left[C(BL - A)^{-1} B \right]^{-1} \]

\[\hat{x}(t) = (A - BL)x(t) + BL_r r(t), \quad y(t) = Cx(t) \]

Observer

\[\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + K[y(t) - C\hat{x}(t) - Du(t)] \]

skattning fel (utan störningar)

\[\dot{\hat{x}}(t) = (A - KC)\hat{x}(t) \]

Lagfilter (fasretarderande):

\[F(s) = \frac{1 + Ts}{\alpha + Ts}, \quad 0 < \alpha < 1 \]

Lagfilter (fasavancerande):

\[F(s) = \frac{1 + Ts}{1 + \beta Ts}, \quad 0 < \beta < 1, \quad \beta = \frac{1 - \sin \varphi_{\text{max}}}{1 + \sin \varphi_{\text{max}}}, \quad \varphi_{\text{max}} \text{ uppnås för } \frac{1}{T\sqrt{\beta}} \]

Regulatorer:

\[F_P(s) = K_p \]

\[F_I(s) = K_i/s \]

\[F_{PI}(s) = K_p + K_i/s = K_p(1 + \frac{1}{T_i s}) \]

\[F_{PID}(s) = K_p + \frac{K_d s}{1 + T_d s} = K_p(1 + \frac{T_d s}{1 + T_d s}) \]

\[F_{PI}(s) = K_p + \frac{K_I s}{1 + T_d s} = K_p \left(1 + \frac{1}{T_i s} + \frac{T_d s}{1 + T_d s} \right) \]

\[F_{PID}(s) = K_P + \frac{K_i s}{z - 1} + \frac{(K_d/T_i)(z - 1)}{z - e^{-h/T_f}} \]
1. a) \[V(t) = \frac{q_1(t) - q_2(t)}{s} \] ellen
\[\Delta V = \Delta q_1 - \Delta q_2 \] (differentiell matricelägen)
\[s \Delta \tilde{V}(s) - \Delta V(s) = \Delta \tilde{q}_1(s) - \Delta \tilde{q}_2(s) \]
\[\tilde{C}_2(s) = \frac{\Delta V(s)}{\Delta \tilde{q}_2(s)} = -\frac{1}{s} \] (\(\Delta q_1\) sätts till noll i förra superpositionen!)

b) Noll kvantit. fel \(\Rightarrow\) integralverkan (du I, PI, PID)

IO funktioner inte här, så förstavalt är PI!

\[F(s) = \frac{K_p}{s} \]
\[L(s) = \frac{K_p s + K_i}{s^2} \]

\(\uparrow\) För att kompensera processens minskade körning

\[c_m = \bar{u} + \arg L(i \omega_c) = \bar{u} - \bar{u} + \arg \left(\frac{K_p \omega_c}{K_i} \right) \]
\[c_m = 90^\circ \text{ och } \omega_c = 1 \Rightarrow K_p = K_i \]

\[|L(i \omega_c)| = \left| \frac{K_p i + K_p}{1 - i} \right| = \frac{K_p \sqrt{2}}{1} = 1 \Rightarrow K_p = \frac{1}{\sqrt{2}} \]

dvs
\[F(s) = -\frac{1}{\sqrt{2}} \left(1 + \frac{1}{s} \right) \]

C) \[L(s) = \frac{0.707 (1 + 5/1)}{s^2} \]

LF = asymptoten skön
0 dB = midvän

\(\omega_c \geq 1\)

\(c_m \approx 45^\circ\)

\(-180^\circ \quad -180^\circ\)

\(-40 \text{dB/dec} \quad -20 \text{dB/dec}\)
Om N-kurvan passerar lätt in till cirkeln med radien ett centrerad i $-1+i0$, kommer den att passera skärmiga mellan den cirkel och enhetscirkeln i punkten Q.

Elementärt trigonometri visar att han $\theta_m = \sqrt{3}$, dvs $\theta_m = 60^\circ$ eller mer om N-kurvan passerar genom en nära liggande punkt.

\[S = \frac{1}{1 + L} \Rightarrow |S(i\omega)| = \frac{1}{|1 + L(i\omega)|} e^{i \text{arg} L(i\omega)} \]

\[|L(i\omega)| = 1 \quad (\text{enl. def.}) \]

\[\text{arg} L(i\omega) = \theta_m - 180^\circ \quad (\text{enl. def}) \]

\[|S(i\omega)| = \frac{1}{1 + \cos(\theta_m - 180^\circ) + i \sin(\theta_m - 180^\circ)} = \frac{1}{1 - \cos \theta_m - i \sin \theta_m} = \frac{1}{\sqrt{2 - 2 \cos \theta_m}} \leq \frac{1}{\sqrt{2 - \frac{2}{3}}} = 1 \]

\[|S(i\omega)| \leq 1 \quad \text{för sådana system.} \]
3. a) \[\hat{X} = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} X + \begin{pmatrix} -1 \\ 0 \end{pmatrix} u + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mu \]

\[\begin{pmatrix} 1 \\ -1 \end{pmatrix} (\begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}) = (1 \; \; 0) \]

\[\Theta = \begin{bmatrix} \Theta_1 \\ \Theta_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \quad \text{Full rank } \Rightarrow \text{Observable!} \]

\[\frac{d\hat{X}}{dt} = A \hat{X} + B u + K \left[y - C \hat{X} \right] = \]

\[= (A - KC) \hat{X} + B u + Ky \]

\[A - KC = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} - \begin{pmatrix} k_1 \\ k_2 \end{pmatrix} (1 \; -1) = \begin{pmatrix} -k_1 & k_1 + 1 \\ -k_2 - 1 & -1 + k_2 \end{pmatrix} \]

\[\begin{vmatrix} \lambda + k_1 & -(k_1 + 1) \\ k_2 + 1 & \lambda + 1 - k_2 \end{vmatrix} = \lambda^2 + (1 + k_1 - k_2) \lambda + k_1 k_2 - k_2 + k_2 + k_1 + 1 \]

\[= \lambda^2 + (k_1 - k_2 + 1) \lambda + 2k_1 + k_2 + 1 \equiv (\lambda + 1)^2 = \lambda^2 + 2\lambda + 1 \]

\[\Rightarrow k_1 - k_2 + 1 = 2 \]

\[2k_1 + k_2 + 1 = 1 \]

\[\Rightarrow k_1 = 2/3, \quad k_2 = -2k_1 = -2/3 \]

\[\therefore K = \begin{bmatrix} 1/3 \\ -2/3 \end{bmatrix} \]

b) \[\frac{d\hat{X}}{dt} = AX + Bu + N \mu \]

\[\frac{d\hat{X}}{dt} = A \hat{X} + Bu + K \left[y - C \hat{X} \right] \]

\[\hat{X} = X - \hat{X} \]

\[\frac{d}{dt} \hat{X}(t) = (A - KC) \hat{X} + N \mu \]

\[\hat{X}(t) = e^{(A+Kc)t} \cdot \hat{X}(0) + \int_0^t e^{(A+Kc)(t-s)} N \mu d\tau \]

\[\approx e^{(A-KC)t} \cdot N \]
3. \(b \neq 0 \) \(A = \begin{pmatrix} -\frac{1}{3} & 4/3 \\ -\frac{1}{3} & -5/3 \end{pmatrix} \)

\(C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \)

\(\mathbf{X}(s) = L^{-1} \left\{ \begin{pmatrix} s + 5/3 & 4/3 \\ -1/3 & s + 1/3 \end{pmatrix} \right\} = L^{-1} \left\{ \begin{pmatrix} s + 1/3 & s + 5/3 \\ 5/3 & s + 1/3 \end{pmatrix} \right\} = \begin{pmatrix} 4/3 \\ s + 1 \end{pmatrix} \)

\(\mathbf{X}(t) = \begin{pmatrix} 4/3 \cdot e^{-t} \\ e^{-t} - 4/3 \cdot e^{-t} \end{pmatrix} \)

\(4. a) \ G(s) = \frac{1}{\sqrt{s^2 + 4s + 3}} = \frac{1}{\sqrt{(s+1)^2 + 1}} = L \{g(t)\} \)

\(g(t) = e^{-2t} \cdot L^{-1} \left\{ \frac{1}{\sqrt{s^2 + 1}} \right\} = e^{-2t} \cdot J_0(t) \)

Enligt dämpningslagen

\(b) \) Systemet insignal-ustabil, \(\int_0^\infty |g(t)| \, dt \) konv. Ausgangsfluss ist nicht endlich:

\(\int_0^\infty g(t) \, dt = \int_0^\infty e^{-2t} \cdot J_0(t) \, dt < \int_0^\infty e^{-2t} \, dt = \int_0^{\infty} e^{-2t} \, dt = \frac{1}{2} < \infty \Rightarrow \)

Systemet ist insignal-ustabil!
5. a) Jämlikhetsför $(p_0, q_0, T_0) = 0$. Sätta hela tidderiveratorna sätt till noll:

\[
\begin{align*}
0 &= T_0 - mg \rho \cos \phi \\
0 &= -mg \sin \phi \\
\Rightarrow T_0 &= mg \rho \\
\phi_0 &= 0
\end{align*}
\]

dvs p_0 fri konsant $\Rightarrow \phi_0 = 0$ och $T_0 = mg \rho$

b) \[
m p_0^2 \ddot{\phi} = \Delta T - mg \cdot \Delta p
\]

\[
\dot{p} \Delta \ddot{\phi} = -mg \cdot \Delta \phi.
\]

Här har används att $\cos \Delta \phi \approx 1$ och $\sin \Delta \phi \approx \Delta \phi$ (små vinklar) och kvadrater på Δ-storheter (och dess derivator) har ignorerats (tecken har satts rätt)

Inför tillståndsstorheter $x_1 = \Delta p$, $x_2 = \Delta \dot{p}$, $x_3 = \Delta \phi$, $x_4 = \Delta \ddot{\phi}$ och skylfordel $u = \Delta T$:

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= -g x_3 \\
\dot{x}_3 &= x_4 \\
\dot{x}_4 &= u_k (mp_0^2) - (\beta p_0^2) x_1
\end{align*}
\]

\[
\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -g & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{\beta}{p_0^2} & 0 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{mp_0^2} \end{bmatrix} u(t)
\]

\[
\dot{y}(t) = [1 \ 0 \ 0 \ 0] x(t)
\]
5, 6 (forts.) Poloerna ges av det $(S^2 - A) = 0$

\[
\begin{vmatrix}
S & -1 & 0 & 0 \\
0 & S & 9 & 0 \\
0 & 0 & S & -1 \\
+\frac{2}{P_0} & 0 & 0 & S
\end{vmatrix} = S^4 + \frac{a^2}{P_0^2} S^2 + \frac{a^4}{P_0^2} = S^4 + \nu^4 =
\]

\[
= (S + \nu)(S^2 - \nu S^2 + \nu^2 S - \nu^3)
\]

\[S = -\nu \quad \text{(Stabil pol)} \quad \text{Rouths criterium} \Rightarrow \]

\[
\begin{array}{c|cc}
S^3 & 1 & \nu^2 \\
S^2 & -\nu & -\nu^3 \\
S & \nu & 0 \\
1 & -\nu^2 & 0
\end{array}
\Rightarrow \text{Instabilt system}
\]

\[
(\nu^3 - \nu S^2 + \nu^2 S - \nu^3) = \nu(S^2 + \nu^2) - \nu(S^2 + \nu^2) = (S - \nu)(S^2 + \nu^2)
\]

Systemet har alla poler för $S = \nu, S = -\nu$ och $S = \pm i \nu$ där $\nu = \sqrt{a/P_0}$. (En eller flera poler i HHP.)