Problem 1. 10p. (D)

En last med impedansen \(30-j50\Omega\) är seriekopplade med en reaktans \(X\) och ansluten till en förlustfri transmissionsledning med karakteristisk impedans \(25\ \Omega\) och längd \(L\). Transmissionsledningen är själv ansluten till en \(50\ \Omega\) signallinje.

\[
\begin{align*}
Z_0 &= 50\ \Omega \\
Z_L &= 30-j50\ \Omega \\
\end{align*}
\]

Bestäm längden \(L\) av transmissionsledningen och och reaktansen \(X\) för att få \(VSWR=1\) i signallinjen.
Problem 2. 7p.

Kretsen i nedanstående figur matas av en pulsfunktionsgenerator med intern impedans av 50 Ω som slås på vid t=0 och levererar en enda puls $V_s=2V$ på 3ns. Alla transmissionsledningar är förlustfria och har karateristisk impedans $Z_0=50$ Ω. Anta att utbredninshastigheten är lika med ljushastigheten.

\[a. \text{ Rita spänningen vid ingången av första transmissionsledningen (A) för } 0<t<130 \text{ ns.} \]
\[b. \text{ Rita spänningen vid lasten } Z_1 \text{ (B) för } 0<t<130 \text{ ns.} \]
\[c. \text{ Rita spänningen vid C för } 0<t<130 \text{ ns.} \]

Vågledare:

Problem 3. 10p. (D)

En rektangulär vågledare är fylld med ett förlustfritt dielektriskt material med $\varepsilon_r=9$. Vågledarens inre mått är $a=1$ cm och $b=0.7$ cm.

Vilka moder kan utbreda sig vid 21 GHz?

Problem 4. 6p.

En våg utbredes sig vid 14GHz i en cylindrisk vågledare ifyll med teflon ($\varepsilon_r=2.08$) och har en radie på 0.5 cm.

Över vilket avstånd ändrar sig fasen med 90 grader?
Antenner

Problem 5. 8p.

För att öka radartvärsnittet av ett objekt kan man använda en bistatisk radar, där mottagaren och sändaren inte delar samma antenn.

![Diagram](image)

Härled uttrycken för kvoten mellan den sända effekten \(P_T (\lambda) \) och den mottagna effekten \(P_R (\lambda) \) i mottagaren som funktion av antennernas egenskap samt \(R_1 \) och \(R_2 \).

Problem 6. 9p.

Antag att strömfördelningen i en centrematad kort spötanenn med längden \(2h \) \((h<<\lambda)\) är triangulär \(I(z) = I_0 \left(1 - \frac{|z|}{h} \right) \).

Beräkna de elektriska och magnetiska fälten i fjärrzonen.

Mikrovåg

Problem 7. 10p.

Figuren nedan visar en last och en förlustfri tvåport bestående av ett s.k. L-nät (två diskreta passiva komponenter). Systemimpedansen \(Z_0=100 \ \Omega \).

a. (8p) Använd det bifogade Z/Y Smithdiagrammet för att konstruera ett L-nät som transformerar lasten \(Z_L=25+j50 \ \Omega \) till \(Z_{\text{in}}=60+j180 \ \Omega \) för frekvensen 3 GHz. Markera tydligt i Smithdiagrammet, riv ur det och bifoga det till din lösning.

b. (2p) Bestäm även reflektionskoeficienterna mot last och ingång, \(\Gamma_L \) och \(\Gamma_{\text{in}} \), genom att läsa av dem i Smithdiagrammet. Visa tydligt hur du har läst av dem.
NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES
smithdiagram
Problem 2:

- Pulsen löper till generatorkopplingen: \(t = \frac{1.5 \times 10^8}{3 \times 10^8} = 50 \text{ ns} \)
- Från parallellkopplingen till \(Z_1 \): \(t = \frac{7.5 \times 10^8}{3 \times 10^8} = 25 \text{ ns} \)
- Från parallellkopplingen till \(Z_2 \): \(t = \frac{75 \times 10^8}{3 \times 10^8} = 250 \text{ ns} \)

\[Z_0 = 10 \Omega \]

Spänningsdelning: \(\frac{V_0}{Z_0 + Z_0 + R_0} = \frac{V_1}{Z_0} \)

\[V_0^+ \]

- \(t = 0 \)
- \(t = 10 \text{ ns} \)
- \(t = 20 \text{ ns} \)
- \(t = 40 \text{ ns} \)

Branchen med \(Z_1 \)

\[V_0^+ (A + \Omega_1) \]

\[Z_0 (A + \Omega_1) \]

\[(A + \Omega_1) (Z_1) (A + \Omega_1) V_0^+ \]

\[V_0^+ (A + \Omega_1) \]

- för långt och annandet deltag
- ingen styrkan kommer tillbaka

\[Z_0 = 10 \Omega \]
därför får man följande spänningar i A:

$V_{0}^{+} = 1\, V$

Spänningen i B:

$V_{0}^{+}(A+I_{B1})(1+I_{d}) = 888\, \text{mV}$

$V_{0}^{+}(A+I_{B1})(1+I_{d}) = -987\, \text{mV}$
Problem 3.

An mode can be found with \(f = 21 \text{ GHz} \) based on

\[f > f_c \text{ (brefrekvens)} \]

Rectangular waveguide, therefore TE and TM modes have same \(f_c \)

\[f_c = \frac{c_0}{2 \pi} \sqrt{\left(\frac{m \pi}{a_c} \right)^2 + \left(\frac{n \pi}{b_c} \right)^2} \]

\[f_c (TE_{10}) = 5 \text{ GHz} \]
\[f_c (TE_{01}) = 7.146 \text{ GHz} \]
\[f_c (TE_{20}) = 14.28 \text{ GHz} \]
\[f_c (TE_{20}, TM_{00}) = 10 \text{ GHz} \]
\[f_c (TE_{11}, TM_{11}) = 8.716 \text{ GHz} \]
\[f_c (TE_{12}, TM_{12}) = 15.13 \text{ GHz} \]
\[f_c (TE_{21}, TM_{21}) = 17.28 \text{ GHz} \]
\[f_c (TE_{21}, TM_{21}) = 17.43 \text{ GHz} \]
\[f_c (TM_{00}) = 15 \text{ GHz} \]
\[f_c (TE_{31}, TM_{31}) = 16.61 \text{ GHz} \]
\[f_c (TE_{31}, TM_{31}) = 16.71 \text{ GHz} \]
\[f_c (TM_{40}) = 20 \text{ GHz} \]

All modes can

\(\text{oscilla} \text{ta} \) sig vid 21 GHz
Problem 4:

\[f_0 = 14 \text{ GHz} \]

vilken mod kan dock vara?

\[f_{dc} (TE_{11}) = \frac{\pi f_0 c_0}{2 \pi a \sqrt{\varepsilon}} = 12.19 \text{ GHz} \]

\[f_{dc} (TM_{01}) = \frac{\pi f_0 c_0}{2 \pi a \sqrt{\varepsilon}} = 18.92 \text{ GHz} \]

vägen utveckle sig enligt \(TE_{11} \) moden.

vilken är den "guidade väglängden''?

\[\beta = \sqrt{k^2 - \left(\frac{f_{dc}}{c_0} \right)^2} = \sqrt{(422.9)^2 - (1.841)^2} = 208 \text{ mm}^{-1} \]

\[\lambda_g = \frac{2\pi}{\beta} = 30 \text{ mm} \]

avståndet som krävs för att fasen ska ändras med \(90^\circ \)

\[\lambda_g \frac{\lambda_g}{4} = 7.5 \text{ mm} \]
Problem 5:

Radon avvärmning:

\[S_{in} = 4\pi R_z^2 S_R \]

\[S_{in} = \frac{P_T}{4\pi R_1^2} G_{DT} \] in-effekten vid objektens sammanträde

\[S_R = \frac{P_L}{A_{er}} = \frac{P_L}{\frac{\lambda^2}{4\pi}} G_{DR} \] in-effekten vid molnagen

\[\Rightarrow \sigma \propto \frac{P_T}{4\pi R_1^2} G_{DT} = \frac{4\pi R_z^2}{4\pi} \frac{P_L}{\frac{\lambda^2}{4\pi}} G_{DR} \]

\[\frac{P_L}{P_T} = \frac{\sigma \lambda^2}{(4\pi)^3} G_{DT} G_{DR} \frac{1}{R_1^2 R_z^2} \]
Språkmannen kan ses som massa helgdipoler vid varandra.
For avstandskillnaderna håller oftefallet: $R_1 = R_2$ för Amplud.
For allt nära på förskillnaderna: $R_1 = R_2 - 2 \cdot c \cdot \cos \theta$

För en Heitz dipol:

E från fallet: $E_\theta = \eta_0 \cdot H_\varphi$

$$= j \cdot \frac{3}{4 \pi} \left(\frac{e^{-jBR}}{R} \right) \beta \sin \theta \eta_0$$

inkoppling för helt antennen:

$$E_{\theta} = j \cdot \frac{I_0 \eta_0 \beta \sin \theta}{4 \pi} e^{-jBR} \int_{-h}^{h} \left(1 - \frac{z^2}{h^2} \right) e^{j \beta z \omega \Theta} \cdot d\zeta$$

$$= j \cdot \frac{I_0 \eta_0 \beta \sin \theta}{2 \pi} e^{-jBR} \int_{-h}^{h} \left(1 - \frac{z^2}{h^2} \right) \cos \left(\beta z \omega \Theta \right) \cdot d\zeta$$

$$= j \cdot \frac{I_0 \eta_0 \beta \sin \theta}{\beta h / R} e^{-jBR} \cdot \frac{\sin \Theta \left(1 - \cos \left(\beta z \omega \Theta \right) \right)}{\cos \Theta}$$

$H_{\varphi} = \frac{E_{\theta}}{\eta_0}$
Normera last- och impedans

\[Z_L = \frac{Z_L}{Z_0} = \frac{25 + j50}{100} = 0.25 + j0.5 \]

\[Z_{in} = \frac{Z_{in}}{Z_0} = \frac{60 + j180}{100} = 0.6 + j1.8 \]

Markera \(Z_L \) och \(Z_{in} \) i Smith diagrammet.

Vi ska nu förflytta oss från \(Z_L \) till \(Z_{in} \) genom att lägga till en förlustfri komponent i serie (=förflyttning längs konstant resistanscirklar) och en förlustfri komponent parallellt (=förflyttning längs konstant konduktanscirklar).

Vi börjar med att lägga till en kondensator parallellt till en spole i serie.

\[Z_{in} \quad C \quad Z_L \]
Parallell kondensatorns normerade susceptibility ska ta oss från y_L till y_i längs den konstanta kondutans-cirkeln $g = 0.8$.

\[y_L + j \beta p = y_i \]
\[(0.8 - j1.6) + j \beta p = 0.8 - j0.83 \]
\[\Rightarrow \beta p = 0.77 \]

Bestäm $C_P = \beta p \ Y_0 = \omega \ C_0$

\[\Rightarrow C_P = \frac{\beta p}{\sqrt{\omega \ \mu_0 \ \varepsilon_0}} = \frac{0.77}{100 \ \cdot \pi \ \cdot 3 \cdot 10^{-9}} = 0.47 \ \mu F \]

Seriespolens normerade reaktans x_S ska ta oss från Z_1 till Z_{in} längs $r = 0.6$.

\[Z_1 + j \ x_S = Z_{in} \]
\[(0.6 + j0.625) + j \ x_S = 0.6 + j1.8 \]
\[\Rightarrow x_S = 1.8 - 0.625 = 1.175 \]

Bestäm $L_S = x_S \ Z_0 = \omega \ \ L_S$

\[\Rightarrow L_S = \frac{x_S \ Z_0}{\omega \ \mu_0} = \frac{1.175 \ \cdot 100}{8 \ \pi \ \cdot 3 \ \cdot 10^{-9}} = 6.2 \ \mu H \]

(Det går även att börja med en spole i serie följd av en parallell kondensator.)
Normalized Impedance and Admittance Coordinates

Smith Chart Form ZY-01-N

Color by J. Colin, University of Florida, 1987

Radially Zoom Parameters

Toward Load ———

Toward Generator ———
76) Ur Smith diagrammet avläser vi belopp och fas för \(P_L \) och \(P_{ih} \).

\[
P_L = \left(\frac{49.5}{74} \right) 1125^\circ = 0.67 \ 1125^\circ
\]

\[
P_{ih} = \left(\frac{5.7}{74} \right) 154^\circ = 0.077 \ 154^\circ
\]