Re-exam in Advanced Programming in Python (DAT515)

Chalmers University of Technology

25 August 2022, 8:30 to 12:30, on campus Johanneberg
Examiner: Aarne Ranta aarne@chalmers.se

Tel. 1082, mobile 0729 74 47 80

Write your answers directly below the questions. You can of course use separate sheets of
paper to draft and experiment, but only the question papers will be graded. This reflects the fact
that the answers can and should be short.

You will need 15 points out of 30 in questions 1-6 of this exam to get accepted with the grade
that your lab work allows.

If you have done extra labs (colouring or clustering) you will also need to get half of the points
for the corresponding extra questions. If you have not done extra labs, your answers to those
qguestions will not be graded.

The final result of this exam will be reported as 3, 4, 5, or rejected. As specified in the course
plan, you will get

- grade 5 if you have at least 50 points from the labs, at least half of the points of the
bonus questions corresponding to your labs, and at least 15 points from questions 1-6.

- grade 4 if you have at least 40 points from the labs, at least half of the points of the
bonus questions corresponding to your labs, and at least 15 points from questions 1-6.

- grade 3 if you have at least 30 points from the labs and at least 15 points from questions
1-6.

- grade U otherwise

mailto:aarne@chalmers.se

For your

<stm> =

<decorator
<asname>
imports
<elses>
<elif>
<except>
<finally>
<block>
<exp> ::=

<keyvalue> :

<arg>

<cond> ::
<op> 1=

<assignop> ::
1= <exp>? :<exp>? <step>?
ti= i<exp>?

<slice> :
<step>

reference: the syntax of (the relevant parts of) Python

<decorator>* class <name> (<name>,*)?: <block>
<decorator>* def <name> (<arg>,*): <block>
import <name> <asname>?
from <name> import <imports>
<exp>,* = <exp>,*
<exp> <assignop> <exp>
for <name> in <exp>: <block>
<exp>
return <exp>,*
yield <exp>,*
if <exp>: <block> <elses>?
while <exp>: <block>
pass
break
continue
try: <block> <except>* <elses> <finally>?
assert <exp> ,<exp>?
raise <name>
with <exp> as <name>: <block>
> 1i= @ <exp>
1i= as <name>
ti= % | <name>,*
1:= <elif>* else: <block>
::= elif exp: <block>
::= except <name>: <block>
::= finally: <block>
ti= <stm> <stm>*
<exp> <op> <exp>
<name>. ?<name>(<arg>,*)
<literal>
<name>
(<exp>,*)
[<exp>,*]
{ <exp>,* }
<exp>[exp]
<exp>[<slice>,*]
lambda <name>*: <exp>
<keyvalue>,* }
<exp> for <name> in <exp> <cond>?)
<exp> for <name> in <exp> <cond>?]
<exp> for <name> in <exp> <cond>? }
<exp>: <exp> for <name> in <exp> <cond>? }
<exp>
not <exp>
i= <exp>: <exp>
1i= <name>
| <name> = <exp>
| *<name>
| **<name>

T e)

Question 1 (12 p). What is the value (or possibly error) of the following expressions?
Remember that None is also a value!

- 'python'.reverse()
Answer:

- 'python'[-1::-2]
Answer:

- [str(x) for x in range(3)]
Answer:

- {c: list(c) for c in 'typhoon'}
Answer:

- {'x" for x in range(120)}
Answer:

- 1>2and x> 1
Answer:

- [print(x) for x in range(3)]
Answer:

- 2 * False
Answer:

- 2 * 'False'
Answer:

- lambda x: range(x)
Answer:

- [x for x in range(3) if x < x**2 < x**3]
Answer:

- {3

Answer:

Question 2 (3 p). Write a lambda expression for a function that sorts the characters in a string
in their usual alphabetical order, so that for instance 'bAdC' is converted to 'AbCd'. Both the
argument and the return value are strings, and they must contain the same characters, although
possibly in a different order, not forgetting duplicates.

Question 3 (6 p). Consider a dictionary of the following form (assumed to contain all countries
of the world):

countries = {

’Afghanistan’: {’capital’: ’Kabul’, ’area’: 652230, ’population’: 36643815,
’continent’: ’Asia’, ’currency’: ’afghani’},

’Albania’: {’capital’: ’Tirana’, ’area’: 28748, ’population’: 3020209,
’continent’: ’Europe’, ’currency’: ’lek’},

’Algeria’: {’capital’: ’Algiers’, ’area’: 2381741, ’population’: 41318142,
>continent’: ’Africa’, ’currency’: ’dinar’},
etc
}
Write a Python expression that answers the query How many countries in Europe have a
population of over ten million? by returning an integer.
Answer:

Also write an expression for a dictionary that, to each continent, assigns the total population of
all countries on that continent.
Answer:

Question 5 (3 p). Write the adjacency list of the following graph as a Python dictionary.

Question 6 (6 p). Class hierarchies can model objects that share some attributes but differ in
others. In our example, we consider literary works, which always have a title and an author.
Some works are books, which have a number of pages as well. Some works are recordings and
have a duration. Finally, an audio book has all these attributes.

Write Python class definitions for the following classes and their attributes, named as follows:

- Work: title, author

- Book: title, author, number_of_pages

- Recording: title, author, duration

- Audiobook: title, author, number_of pages, duration

Your class definitions should enable the following expressions for class instances:

- Work('Kniv', 'Jo Nesbg')

- Book('Kniv', "Jo Nesbg', 758)

- Recording('Kniv', 'Jo Nesbg', 21.2)

- Audiobook('Kniv', 'Jo Nesbe¢', 758, 21.2)

Use as much inheritance as possible. You don't need to define getters or setters: just make sure
that all attributes appear as class variables that are set when the class constructors are called.

Bonus question on graph colouring (6 p). Answer this question if and only if you have
submitted the extra lab on graph colouring (be it one or two parts - the question is the same in
both cases).

Use the simplify-select algorithm to colour the following graph with just three colours. Show

- an order in which the vertices can be removed in the simplify phase,
- how colours are then selected for each vertex at a time.

Bonus question on clustering (6 p). Answer this question if and only if you have submitted the
extra lab on clustering.

Consider the graph

The weight of each edge is defined as the absolute value of the difference of the numbers of the
connected vertices. For example, the weight of the edge (3, 5) is 2. Start by writing these
weights next to each edge in the picture above. Then show (beside the graph) the k-spanning
tree clusters with k = 2, 3, 4. It is enough to state which edges are removed in each case. The
aim is to remove the heaviest edges first.

