
Write your anonymous code (not your name):

TDA417 2023 only: Check this box if you have passed the
extra-exam 2023-10-12 ☐
Then you can skip questions 1–8. If you don’t know what this is about you can safely ignore it.

Basic question 1: Complexity
The below function takes a list of numbers and finds all the products of two different numbers in
the list together with their multiplicity (the number of ways of getting that product).

function count(xs : LinkedList<integer>) -> Map<integer, integer>
res = new map
for x in xs: O(n) iterations

for y in xs: O(n) iterations
if x != y: Worst case always true

z = x * y
if not res.containsKey(z) O(n2) or O(log n) (x4)

res.put(z, 0)
res.put(z, res.get(z)+1)

return res

What is the asymptotic complexity in terms of the length n of xs? Assume that the map is
implemented using:

A. a (simple) binary search tree: O(n4)

B. an AVL tree: O(n2 log n) or O(n2 log n2)

Justify your answer briefly, or (better) by annotating the statements in the code.

See annotations in code.

Grading note: The word “not” was missing in the original code, but that has no impact on
complexity. If someone answers O(1) because it crashes at null+1 or O(n2) because res only ever
contains a single element (whatever the result of null+1 is), I suppose we will grudgingly give a
point for that.

Datastrukturer och algoritmer, written exam 2023-10-27

Basic question 2: Sorting
Once, in an alternate universe, some archaeologists were excavating an ancient tomb with strange
scribblings on a wall. Fortunately, you were one of the archaeologists. Since you had taken a
course in data structures, you quickly realised that it was an implementation of a well-known
sorting algorithm.

However, the tomb was several thousand years old, so parts of the implementation had eroded:

def sort(A):

n = length of A

for i = 0 to n:

j = i

for k = j+1 to n:

if A[k] < A[j]:

j = k

swap A[j] and A[i]

What sorting algorithm is this? Selection sort

Help the other archaeologists by filling in the eroded parts of the implementation above.

Note: it’s important that you get everything right, otherwise the sorting algorithm won’t work and
the ancient gods will be upset, causing the tomb to collapse. (This is perfectly plausible in the
alternate universe.)

Grading note: Swapping the order of A[j] and A[i] is fine. Omitting A in the swap operation is OK,
but not in the comparison.

Datastrukturer och algoritmer, written exam 2023-10-27

Basic question 3: Basic data structures
A doubly-linked list is a linked list where every list node has a pointer not only to the following
element, but also to the previous one. The advantage is that you can iterate over the elements
both forwards and backwards. Here’s an example implementation with string values:

class DoublyLinkedList
first : DoublyLinkedNode
last : DoublyLinkedNode

class DoublyLinkedNode
next : DoublyLinkedNode
prev : DoublyLinkedNode
value : String

Note that the list points to both the first and last
element of the list, to facilitate both forwards and
backwards iteration. To the right is a picture of
how the list [”cat”, ”dog”, ”crocodile”] would look.

Give an implementation of the method append, which takes a DoublyLinkedNode and a string
and inserts the string directly after the given node. For simplicity, you can assume that the given
node is not the first or the last in the list.

def append(nodeBefore : DoublyLinkedNode, str : String):
newNode = new DoublyLinkedNode(value = str)

newNode.next=nodeBefore.next

newNode.prev=nodeBefore

nodeBefore.next=newNode

newNode.next.prev=newNode

...

Show how the example list looks after appending ”parrot” after the node containing ”dog”:

Datastrukturer och algoritmer, written exam 2023-10-27

Basic question 4: Search trees
Assume the 2-3 tree to the right.

In which order could the elements have been added to
the tree? Assume that no elements have been deleted yet.

Check all the orders that are possible:

☐ A: 2, 1, 3, 4, 5

☑ B: 2, 3, 4, 1, 5

☐ C: 3, 1, 2, 4, 5

☑ D: 3, 1, 5, 4, 2

☑ E: 4, 3, 1, 2, 5

Datastrukturer och algoritmer, written exam 2023-10-27

Basic question 5: Abstract Data Types
Below is part of a program interacting with a collection data type (initially empty).

add(9)
add(7)
x = remove()
add(6)
add(3)
add(5)
y = remove()
z = remove()

What are the values of x y and z assuming that:

a) add/remove are push/pop for a stack?

x = 7, y =5, z = 3

b) add/remove are enqueue/dequeue for a queue?

x = 9, y =7, z = 6

c) add/remove are add/removeMin for a priority queue?

x = 7, y = 3, z = 5

Datastrukturer och algoritmer, written exam 2023-10-27

Basic question 6: Hash tables
Consider this (partial) implementation of an open addressing hash table using linear probing, with
an error in the resize function:

class HashTable<A> :
size : Int = 0
loadFactor : Double = 0.75
table : Array of A with initial size 4

add(item : A) -> Void
…

resize() -> Void :
if size >= loadFactor * table.length :

newTable = new Array of A with size table.length * 2

for i in 0 to table.length : // up to not including
newTable[i] = table[i]

table = newTable

The hash table is implemented with a fixed-size array and keeps track of the number of items in
the table with the size variable. The loadFactor is a constant that determines when we need to
resize the array.

Give a short text explanation of why this resizemethod does not work (you choose a suitable
type A, and hash function for it). The explanation should also include a concrete example
(showing the contents of the table) that illustrates the problem. Include both what happens when
using the faulty resizemethod above, and what should happen using a correct method.

It does not re-hash the elements.

Example: _ are empty table cells (null). elements are integers hashed by their value % size.

[0,5,2,_] will be resized to [0,5,2,_,_,_,_,_], but the correct table for those elements would be
[0,_,2,_,_,5,_,_] since hash(5)%8=5, not =1.

Datastrukturer och algoritmer, written exam 2023-10-27

Basic question 7: Graphs

You are given the undirected weighted graph to the right.

Perform uniform-cost search (also known
as Dijkstra’s algorithm) starting from node A (in the
middle of the picture).

In which order does the algorithm visit the nodes, and
what is the computed distance to each of them?

first visited last visited

node A F D G C E B

distance 0 5 7 8 9 10 11

The last column should be empty, but if you put something there you will still get a point if all the
other cells are correct.

Datastrukturer och algoritmer, written exam 2023-10-27

Basic question 8: Mystery Data Structure

Below is a simple class implementing a common data structure, and a function that operates on it:

class What:
value : String
unknown : List<What>

function mystery(x : What) -> Int:
if x == null

return 0
res = 1
for y in x.unknown:

res += mystery(y)
return res

Here is an example of a little program using the data structure (assume unknown is automatically
initialised to an empty list of sufficient capacity for each What):

x = new What("Animals")
x.unknown[0] = new What("Frogs")
x.unknown[1] = new What("Mammals")
x.unknown[1].unknown[0] = new What("Humans")
x.unknown[1].unknown[1] = new What("Squirrels")
x.unknown[1].unknown[2] = new What("Dogs")

What data structure is this? Tree (Directed Acyclic graph would be OK, just directed graph is
dubious since then the size function will only work in the absence of cycles). “Binary tree” is
incorrect.

What is a better name for the instance variable ‘unknown’? Children

Which property of the data structure does the function ‘mystery’ compute?

Size (number of nodes)

Datastrukturer och algoritmer, written exam 2023-10-27

Advanced question 9: Complexity
We are given:

● an array (of numbers) of size n
● A collection of k numbers that we wish to find in the array.

For this, we consider two approaches:

A. Perform a linear search for each of the k numbers.

B. Sort the array using merge sort. Then use binary search for each of the k numbers.

What is the asymptotic complexity of each approach in terms of n and k?

A. O(nk)

B. O(n log n + k log n) = O((n+k) log n)

For which values of k is the asymptotic complexity of approach A at least as good as that of
approach B? Answer in O-notation in terms of n.

k∈ O(log n)

Explain your reasoning:

Grading note: since it’s a bit unclear if this refers to the whole question, just explaining the latter
part is sufficient.

For k∈ O(log n) the complexity of A becomes O(n log n), and the complexity of B becomes
O(n log n + (log n)2)=O(n log n)

Datastrukturer och algoritmer, written exam 2023-10-27

Advanced question 10: Amortised balanced trees?
A fellow data structures student is fascinated with amortised complexity as seen in dynamic
arrays, and wants to apply it to binary search trees. The student makes these observations:

● We can flatten a binary search tree of size n into a sorted array in O(n) time.
● We can turn a sorted array of length n into a well-balanced binary search tree in O(n) time

by taking the middle element as the root and recursively “treeifying” the left and right
sides.

The data structure the student proposes is this implementation of a set:

class BalancingTreeSet:
bst = a regular (non-balanced) binary search tree
capacity = 1

add(key):
bst.add(key)
if bst.size() >= capacity:

bst = fromSortedList(bst.toSortedList())
capacity = capacity * 2

contains(key):
return bst.contains(key)

The student claims that the argument we apply to dynamic arrays applies here as well, and the
operations add and contains will be amortised as efficient as AVL or other self-balancing trees.

Is the student correct (is BalancingTreeSet as efficient as an AVL Tree set)? (check a box)

Yes, it’s as efficient ☐ No, it’s less efficient☑

If you answered yes: provide a more convincing argument.

If you answered no: disprove the claim and demonstrate a worst-case that exhibits suboptimal
performance.

The worst case, after n=2k insertions the tree will have a balanced part of 2k-1=n/2 elements and the
remaining n/2 elements unbalanced, in the worst case a so-called pathological tree which is
essentially a linked list. So adding those last n/2 elements will have taken quadratic time.
Furthermore, if we stop inserting at that point and run an arbitrarily large number of contains
operations, each of those will be O(n) time worst case.

(In dynamic arrays, access time is not affected by how close you are to resize!)

Datastrukturer och algoritmer, written exam 2023-10-27

Advanced question 11: Union of BST sets
Assume the following standard BST implementation of sets of integers:

class IntSet:
left : IntSet
mid : Integer
right : IntSet

Here is an idea of a divide-and-conquer algorithm for calculating the union A∪ B of two sets:

● Let x be the root value (mid) of A, and AL and AR the left and right children of A
● Split the other tree (B) into two new trees:

○ B< contains all values less than x
○ B> contains all values greater than x

● Calculate (recursively) the union of the subtrees:
○ L = AL∪ B<

○ R = AR∪ B>

● Now the union A∪ B can be constructed by: IntSet(L, x, R)

First implement the helper functions for splitting B.

Writing one of these two (very similar) functions is enough:

def splitLesser(s : IntSet, x : Integer) -> IntSet
def splitGreater(s : IntSet, x : Integer) -> IntSet

Then implement union on IntSets as the following function:

def union(a : IntSet, b : IntSet) -> IntSet

The complexity of splitLesser Lesser and splitGreatermust be O(h) where h is the
height of the tree.

Note 1: Answer on a separate sheet of paper.

Note 2: Don’t forget to handle empty sets (i.e., where the IntSet is null/None).

Note 3: You may treat IntSet as immutable (instances cannot be changed after creation). This
allows you to safely reuse subtrees of the input in the output.

Note 4: If you want, you can implement this in Haskell too. Then you can assume that IntSet is
the following type: data IntSet = Empty | Node IntSet Integer IntSet

Grading note: There was a typo in the exam where it said splitLeft/splitRight in the complexity
requirement. See next page for solution.

Datastrukturer och algoritmer, written exam 2023-10-27

def splitLesser(s : IntSet, x : Integer) -> IntSet
if s==null:

return null // If s is empty it has no elements less than x
if s.mid >= x:

return splitLesser(s.left, x) // all the values are in s.left
// Now we know s.mid < x
// The tree should include s.mid and everything from s.left,
// and the parts of s.right that are < x
return IntSet(s.left, s.mid, splitLesser(s.right, x))

def union(a : IntSet, b : IntSet) -> IntSet
if a==null:

return b
x = a.mid
lft = union(a.left, splitLesser(b, x))
rgt = union(a.right, splitGreater(b, x))
Return IntSet(lft, x, rgt)

Datastrukturer och algoritmer, written exam 2023-10-27

Advanced question 12: Graph algorithm
The class Graph implements directed graphs using an adjacency matrix (where the vertices are
numbered 0, 1, 2, …). For a graph g:

● g.size() gives the number of vertices.
● g.connected(x,y) is true if there is an edge from vertex number x to vertex number y in

the graph (and false for all other inputs).

Both operations take O(1) time. Your task is to determine what fun does and how fast it is.

class Graph:
size() -> int
connected(from : int, to : int) -> bool

fun(g : Graph, s : int) -> Bool:
visited = new Set
queue = new Queue
queue.enqueue(s)

while not queue.isEmpty():
here = queue.dequeue()
if not visited.contains(here):

visited.add(here)
if g.connected(here, s):

return true
for i from 0 to g.size():

if g.connected(here, i):
queue.enqueue(i)

return false

Describe briefly what the function does:

Determines if s is part of a cycle (if there is a path from s back to s)

What is the worst-case asymptotic complexity of the function in the numbers V of vertices and E of
edges of g? Make reasonable assumptions about the complexity of data structure operations.
Justify your answer.

O(V2) assuming enqueue is O(1) and dominates the complexity. not visited.contains is true at most
V times, and the for-loop clearly has V iterations.

One could argue for O(E log V + V2) if visited.contains is O(log n), but using an AVL tree set or such
here does not make much sense since a simple array of booleans will give you O(1) contains.

Grading notes: A few other answers can probably be acceptable if they have sound arguments.

Datastrukturer och algoritmer, written exam 2023-10-27

